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Abstract: Consider an evolutionary process. In genetic inheritance and in human cultural systems 
each new offspring is assigned to be produced by a specific pair of the previous population. This 
form of mathematical arrangement is called a surjection. We have thus briefly described the 
mechanics of genetics – physical mechanics describes the possible forms of loci, and normal genetic 
statistics describe the results as viability of offspring in actual use.  But we have also described 
much of the mechanics of mathematical anthropology. Understanding that what we know as 
inheritance is the result of finding surjections and their consequences, is useful in understanding, 
and perhaps predicting, biological, as well as human, evolution. 
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1. Description of Study 

The basic mathematical description from finding inheritance is a surjection is summarized in 
Part 2 below. By concentrating on the notion of “surjection” we are forced to observe, from 
mathematical theorems in Part 2, that two things that must occur simultaneously: the offspring 
population must all be unique individuals; and the parental pairs must be using identical or 
isomorphic means of creating the offspring. Our normal discussion of phylogenetics imply that the 
parents are using the “same” genetic means (thus that their treatments are identical or isomorphic); 
but the results of Part 2 shows that we must prove that.  

Thus in part 3 provides a detailed description that all offspring are unique, both for humans and 
other offspring. In Part 3 we also present the Mendelian arrays of results of breeding relationships, 
and their traditional statistics. Nothing in seeing that inheritance is a surjection changes what the 
methods of Part 3 detect. We must also recognize that all parental “couples” act under identical or 
isomorphic methods allowed, and all are acting under identical (isomorphic) methods allowed by 
specific mathematical groups. The proof is in the articles of Part 4.  

For population genetics, to count the results of using possible different alleles at each locus, we 
must count the total number of surviving offspring from each parental pair. In physical mechanics 
the creation and the intervals of reproduction are potentially observable within normal human 
perception, usually they occur in very short periods. Thus in population genetics, counting of the 
number of offspring from each pair of “parents” is the actual number of offspring surviving from 
each pair that reproduce. 

In culture theory, existing literature shows that mathematical groups occur as the means of 
describing the mechanism of each culture’s rules of kinship and marriage. But human cultural 
systems may require decades of time for one generation to be replaced by another. Each human 
culture has its own culturally determined means of assigning offspring to parental pairs. Depending 
on the culturally specific rules, each parental pair’s offspring may include their own genetic offspring, 
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but also may follow culturally designated devices such as adoption. Thus for human cultures, the 
assigned offspring may include individuals who may have no genetic relation to the “parents”.  

However when we recognize that the human means of describing kinship and marriage is also 
a surjection, we see from Part 2 that we can apply the Stirling Number of the Second Kind (SNSK). 
Cultural rules allow that offspring are not necessarily biologically related to their assigned parents. 
Use of the SNSK statistics however permits us to find the expected population statistics without 
assuming they are biologically related. Using SNSK thus allows us to interpret the past, and make 
forecasts of the future, in association with the culturally specific rules of marriage, which traditional 
demographic analysis does not treat. This result is discussed in Parts 5 and 6 below. The results in 
Part 6 also shows us that recognition of surjection allows us to treat issues that have not been treated 
by other methods; we thus give specific examples, and how the analysis gives new and unique 
results. Our discussion in Parts 5 and 6 is a bit longer than others here, since the topic has not been 
broadly discussed, though the underlying principles, including examples, have been in published 
articles since 1982. 

In Part 7 we discuss more recent issues, based on thoughts of predicting future biological and 
human evolution, as has been proposed in recent literature. The fact that future evolution is governed 
by a surjection, also means both the present condition, and any future evolution, must be described 
molecules determined by a limited set of mathematical groups. In other parts of physics, when results 
are based on mathematical groups, the future may also be formed into classes determined by those 
groups. We ask here if such result also follows for population genetics. This author suspects this is 
likely the case, but here we simply propose the question. Part 8 is a brief summary. A list of our basic 
definitions is shown following Part 8. 

2. Foundation Discussion  

In genetics, the biological descendants are the actual biological descendants of the identified 
parental pair. In human systems, the descendants may be the actual biological descendants of the 
parental pair, but may also reflect other cultural assignments, such as by (non-inherited) devices such 
as adoption. In both cases, we have a mapping from each offspring to a particular set of parents. The 
well know mathematical name for this relation is surjection. Theorems on how inferences are made 
for surjections include [1] p. 178, [2–4]. Look especially at [1] p. 178 and [4] for the author’s 
“Twelvefold Way” pages 69–79.  

The theorems cited in [1, 2, 3, 4] show that finding that a relation is a surjection also means that 
the newly created offspring individuals are each “unique”, and the entities to which offspring are 
assigned by their parental organisms are identical or isomorphic in how the parents act. Neither of 
those notions was in our concepts of the subjects here. We do not assume that surjection causes these 
results, but if we find out that they are not true, it means our assessment that the processes form a 
surjection is wrong. This we must first demonstrate if “uniqueness” and “identical or isomorphic 
forms of reproduction” are correct descriptions, to believe we have correctly described the process as 
a surjection. 

3. Uniqueness of Offspring  

When we say that the offspring of an evolutionary process are unique, we mean that there is at 
least one, but may be many differences between each of those offspring. Radzevilavicius and 
Blackstone’s [5] very detailed review of the evolution of individuality of offspring populations shows 
that all individuals, of all species, created by evolution are also in some form unique; the reader 
should see that article for its many details. Thus [5] p. 1630 concludes “since [our review] … only 
relies on universal principles of life’s evolution, this framework can potentially be applied to all life, 
no matter what its chemistry, and wherever it is found”.  

The mathematics that describes how biological evolution works began in the late 19th Century, 
representing the frequency or relative frequencies of alternative alleles at specific loci. If we define a 
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single species, there are common sets of DNA/RNA which define that single species. But there may 
also be recombination of the alleles that can act at each loci [6]; [5] made a similar observation. These 
variants may create features in specific offspring that are not determined by the common genes in all 
of that species. Thus despite isomorphism in the defining characteristics of a species (isomorphism 
in following the DNA/RNA genetic codes that define that specific species), the uniqueness of 
individuals includes some differences, which may be differences in specific DNA/RNA alleles, 
differences in recombination of DNA/RNA in their individual coding sequence, and from other 
genetically coded individual differences.  

The first such description was by Mendel [7], followed in the early 20th century by Bernstein 
[8,9]; Fischer [10]; Haldane [11–20]; Wright [21]; Nei [22]; Crow and Kimura [23] and others. There 
are useful overall comparisons of those methods including [24–30] and others. Though each of those 
authors uses somewhat different mathematical representations to determine the allele frequencies in 
specific cases, all show that devices such as those of Mendel allow many different forms of 
inheritance. There are many possible locus sites in each organism, and in nearly all organisms there 
may be diverse alleles at some or many sites; so each individual may have hundreds, or thousands, 
or indeed many multiple thousands, of diverse sites per organism. Thus individual uniqueness is not 
difficult to understand. While isomorphism of certain alleles at certain sites may define a specific 
species, the distinct frequencies in some or many other loci sites of individuals are one of the many 
reasons why unique individual types of each species exist.  

4. Identical Means of Reproduction 

cWe must also show that each of the genetic parental pairs must use identical or isomorphic 
means of reproduction. This has been shown since the basic mechanics for construction of DNA and 
RNA molecules are also structured by the group-theoretical results of physical mechanics. For the 
mechanisms of DNA, see for example the articles of Petoukhov [31–35], Petoukhov and Castro-
Chaves [36], Petoukhov and Hu [37], Petoukhov, Petoukhova and Svirin [38], Hainen [39]’ Rakocevic 
[40] and others, who have demonstrated that the DNA devices used for genetic reproduction are 
described by mathematical groups by physical mechanics. For RNA, see similar work, also using 
similar groups of 64 codons, that have been described by Khrennikov and Kozyrev, Rakocevic, and 
by A. Dragovich and B. Dragovich [41–46]. A simple basic description of genetic mechanisms 
represented is found for example in [38], using descriptions of the 64 codons of DNA with the 
arrangements of all members in accordance with the binary-oppositional signs of the bases A, C, G 
and T.  

While in each act creating new offspring, the specific objects of the genes (DNA and/or RNA) 
are distinct objects, the fact that all must satisfy specific group-theoretical forms, means that the 
isomorphisms of those group theoretical forms (required by how alleles may form under the allowed 
physical mechanics) means that all organisms are formed using the specific sets of mathematical 
groups, thus acting under isomorphic rules of combination. They thus are following what being part 
of surjections implies they must be doing. 

5. Kinship  

Ballonoff [47,48] recently reviewed the literature of mathematical anthropological description, 
in relation to the ability of a system to survive. The earliest paper for mathematical description of 
kinship is from 1882: [49] modeled strings of symbols to represent semantic concepts, such as “MBD” 
(mothers brothers daughter) for an instance of part of the English term “first cousin”. But in 1945 
ethnographer Ruheman [50] created the first description of kinship which identified objects that 
are clearly mathematical groups.  

Ruheman denoted each cultural system by placing names of kinship relations onto finite sets of 
offspring in the culture’s language, used diagrams to show how a terminology relates those sets of 
labels onto representative minimal set of parents, and assumed each system had distinct generations. 
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She used labels A and B for moiety names. Descents of a male of A are also called A; descendants of 
a male of B are also called B; the top layer is one generation of two sets of moieties, with two 
marriages, which reproduces in one generation another set of A and B moieties. Her illustrations use 
“=“ for a “marriage” between two individuals; two sets of parallel but opposite arrows between 
individuals as “brothers and/or sisters”; and placed objects into columns labelled m and f for males 
and females. The arrows or = signs on each end of each line connect to the persons on the other end 
of each line.  

This system thus has at least two sets of marriages in each generation; each A always marries a 
B. In each generation, each generation minimal structure has two marriages. That minimal group has 
an order; let the minimal group size order = s. The structural number of a rule is equal to the size of 
the minimal group representing that rule. Thus for Figure 1, the structural number of that rule is s = 
2. 

 

Figure 1. Example from Ruheman’s study of Australian kinship. 

To create a diagram like Figure 1, [50] p. 543 said: “… The system must be self-contained and 
consistent; must provide a sufficient number of descent lines (a) to enable every member to select a 
spouse from his own generation; (b) to allow space for every distinct relationship term; and no 
[kinship] term may appear more than twice … in any one generation. … The system must be able to 
reproduce itself after a number of generations. …”.  

[50] p. 576 said that by using mathematical representations, “… It is independent of any 
special principles, which might at best be controversial, and proceeds simply from a systematic 
arrangement of the recorded facts; … It enables the dominating features of even a very complex 
system of kinship terms to be brought into full view in a single picture; … It makes possible the 
comparison and classification of widely divergent kinship systems, and provides a useful check on 
the completeness of our information.” Ruheman’s methods do not therefore discuss many of the 
issues often treated in non-mathematical analysis of cultural systems. Avoiding non-
mathematical descriptions is one of her purposes.  

The mathematical groups for each minimal set of kinship terms described by Ruheman (or Weil 
as cited in the next paragraph) is also now called the “minimal structure” [47] of that system of 
kinship description. It is also described [47,48] as the “history” of that system since it describes how 
possible parental pairs of that culture may be created. The minimal structure is not a literal 
description of how all marriages work, though in some cases some empirical relations can also 
look like the Ruheman minimal descriptions in some ethnographies. The minimal kinship 
diagrams also look like the illustrations of regular genetic systems of inbreeding shown by Wright 
[21]. Just as in cultural analysis, the ability to show a minimal representation does not mean that all 
implementations of an experiment to do inbreeding must look exactly like the minimal form. But 
representations are very useful. Petoukhov [51] demonstrated that there are similar mathematics 
behind literary texts (thus including kinship in human languages) and long genetic texts. When 
analyzing human Dravidian kinship categories, Vaz [52] showed that mathematical representation 
of DNA/RNA were isomorphic to the mathematical groups that describe parts of the human 
Dravidian kinship categories.  

While Ruheman created the notion, the most referenced “first” published text using group 
mathematics for kinship was by Andre Weil [53], in an appendix to Claude Levi-Strauss’ 1947 The 
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elementary structures of kinship [54]. Weil’s initiative was then expanded by [55–58]. Use of the related 
Cayley groups was described in [59].  

One apparently difficulty of doing logical and algebraic manipulations on kinship data is that 
mathematical groups require an associative operation that creates the mathematical group on 
elements of the language. But human languages are not associative. In English, compare “Tom 
shows” to “shows Tom”. Thus the first work showing that kinship rules are actually non-associative 
algebras, but still consistent with the mathematics cited here, was [60]. A non-associative algebra can 
have an associative sub-set (the kinship rules for example), which are allowed by [60] and required 
by [48]. [61] is the first paper which derives mathematical kinship groups entirely from purely 
mathematical assumptions. [62,63] elaborated many group-theoretical examples of kinship systems. 
[64] reviewed Weil’s original work and its subsequent history. [65] extended Weil’s work by using 
semigroups and homomorphisms among semigroups, as well as groups. Other extensions include 
[66–71].  

In 2018 a series of eight articles greatly expanded the depth of analysis of kinship [72–79]; readers 
should see those articles also for their added citations. Many of those papers also seeking to relate 
kinship groupings directly to other concepts of cultural order; [60] sought the same results. Thus 
Read [73] p. 54 cited the necessity of mathematical groups in kinship descriptions: “… Because the 
core structure for classificatory terminologies has inverses and not just reciprocity between ascending 
and descending kin terms, the core structure is a group; that is, an algebra with an (associative) binary 
product, an identity element, and an inverse for each element in the algebra.” Read is describing the 
empirical facts that make Ruheman’s concepts necessary.  

Finally, while this author does not advocate that all analysis use mathematical representations 
for all problems of human kinship (nor that they solve all relationship issues), Harris [61] has 
considered this. His conclusion is:  

This paper represents relations among individuals as mathematical relations … and defines a 
relation “alter”. … “alter” is shows to be an equivalence relation, and the equivalence classes 
generated and the “categories of equivalent people” mentioned above … can be pairs to form a 
“clan”… or to form a marriage type … Moreover, our assumptions restricting allowable relations are 
used to prove as theorems the assumptions of previous authors restricting allowable permutation 
groups.  

Thus, while this paper does not advocate that all authors use mathematical representations for 
all analysis, we believe that using the descriptions of human kinship terms using their minimal 
mathematical groups, is a valid basis for the analysis used here. 

6. Culture and Population Measurements 

Summarizing Part 5, knowing the order of a culture’s minimal group, and using the fact that 
inheritance is a surjection, allows us to predict present and future populations statistics for that 
culture. In Part 6 we discuss how to do that, using the percentage of the population at time t using a 
history α with structural number s, and the fact that for each s there is are specific values ns (average 
family size) and ps (percentage of reproducing married females). We can then forecast demographic 
measures demography n(t) and p(t) found as weighted average of the percentage of society with 
structural number s, added over the entire society at each t. We define this in more depth below, and 
give actual examples.  

Each culture assigns offspring individuals to a specified parental pair. For the “reproduction” 
assigned to each parental pair, there may be actual mating between them, but there may also be other 
means of the culture to assign offspring to that pair. These include “cheating” --sometimes known 
but often not known to other members of the population, assignment of other non-genetic offspring 
by adoption, and other means of assigning offspring to each parental pair. [1, 2, 3, 4] show that 
surjection means that the possible average numbers of offspring to parental pairs can be done by the 
Stirling Number of the Second Kind (SNSK), which we implement using Equations (1) through (4) 
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below. While ethnographic studies are usually done from a few months to several years, observations 
over several decades are needed since the results are in “generations”, and each generation typically 
takes from 20 to 30 or so years. None the less our empirical examples summarized below give results 
closely matching what the results from analysis of the potential structural numbers shows us.  

Many things affect population size; this article is not an attempt to identify nor describe most of 
those. The demographic idea of the Leslie matrix [80,81] produces a growth rate and stable age 
distribution as eigenvalues and eigenvectors of a matrix of age-structured mortality and fertility or 
fecundity rates. This reflects the approach of Lotka [82] that the “normal” demographic discussion of 
the growth of populations is analogous to “capital” growth in economics. Neither the Leslie matrix 
nor the Lotka models treats the cultural system, and thus do not treat consequences on population 
change due to changes in the cultural system (that is, due to changes in the history).  

In the illustration below, the formulas that determine the objects described by D are results from 
demographic processes. Definitions of the objects in the illustration are found in our Definitions 
section at end of this text. The surjection requirement of using SNSK as cited in Part 2 allows us to 
predict how the demographics—measures of of n(t) and p(t)—of a population may change, as the 
histories change. To explore this [83] defined:  

D 
Gt  Gt+1 
  
Mt  Bt+1 

d−1 

 

Assignments of offspring and parental pairs are, in each case, what are required by the specific 
rules of genetics or cultural assignment applied. We next show how to use the surjections of cultural 
theory to derive population estimate suing Equations (1) to (4) to understand the illustration. We 
follow by summarizing examples from previously published articles.  

Let s be the structural number of history α. Let ns = average family size of a system with structural 
number s, and define the proportion of (socially ascribed) reproducing females as ps. Let ps = 2/ns. The 
specific values of ps, and ns by structural number s are listed in [3 appendix 2], and further cited in 
[47,84,85]. Note that ns is always ≥ 2, so n*p = 2, or  

½ (ns* ps) = 1 (1) 

Since we can set er(t) = 1, then we can also derive a general “equity growth” equation for any system with 

structural number s: 

er(t) = ½ n*p (2) 

We call this exponential form r(t) “equity growth” to distinguish it from the “capital growth” 
idea per Lotka. But as Lotka also used the notation “r(t)” for “capital growth” we here instead call 
Lotka’s growth rate R(t) to distinguish it from our own r(t); in Equation (4) below we derive an 
estimate of capital growth R(t) from the equity growth r(t).  

When we use the values ns, ps given a history of structural number s, see [3 appendix 2]. Then if 
we have just one structural number, since nsps = 2, then Equation (2) results in r(t) = 0. When r(t) = 0, 
it shows that the values of ns and ps allow a culture with history α and structural number s to have 
neither growth nor decline. As structural number s increases (above s = 3), then from [3 at appendix 
2,47,84,85] for a system with only one cultural rule (one history) values of ns increase and ps decrease, 
to maintain cultural stability with zero change r(t) = 0. Another way to state this same result is that if 
the cultural systems gets “more complex” (as the structural number s increases) then the average 
family size ns per household also increases—that is similar to the notion that as general systems 
become more complex, their size must increase to maintain the same level of reliability—which here 
is when r(t) = 0.  
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Now let the population at time t use some set of histories α, …, β. Then the proportion of each 
generation population Gt using history α is vt, the proportion of Gt using history β is vt, etc. We 
require that 0 ≤ vt, …, vt ≤ 1 and vt = 1 over all histories allowed in time period t. Then the average 
family size n(t) = vtns over all histories allowed at time t; the average proportion of marries females 
allowed to fertilize is p(t) = vtps over all histories allowed at time t. We thus get an equation that 
allows prediction at time t of the time-dependent average population measures for n(t), p(t) and r(t) 
as the percentages of histories α, …, β change:  

er(t) = ½ n(t)*p(t) (3) 

Thus in summary, r(t) = 0 whenever all rules have the same structural number (or all have only 
s = 2 or 3). But r(t) ≠ 0 whenever there is a change in cultural dynamics by allowing rules with more 
than one structural number, and at least one of structural number > 3; all such changes cause 
population growth (or decline). This is well known by anthropologists: as cultures change, 
population statistics can also change. It is however predicted by the mathematics of cultural theory. 
We need to use SNSK, as revealed by the mathematics of surjection, to find this.  

To relate r(t) to the demographic notion R(t) we applied the mathematics originally developed 
for analysis of financial leverage (see [86] Chapters 3 and 4, [84] especially its Equation (17), and [85]), 
which result:  

R(t) = 2 p(t)r(t)/[p(t)2 + 2r(t)] (4) 

Equation (4) is also called the amplification equation since it increases the usually much smaller 
equity growth value of r(t) into a larger capital growth value R(t). It can also be called “amplification” 
of local survivability, or, by analogy to borrowing of capital in the world of finance, “leverage”. The 
reader can look at [47,48,84,85,87,88] for more details and citations of numerous examples.  

We now summarize some results below. One of the useful results of finding cultural rules of 
kinship and marriage are surjections, is that the theorems of Part 2 allow is to apply the statistics of 
the statistic SNSK. Most of the “standard statistics” taught in academic statistics courses are in fact 
adaptations of the distributions of volumes of identical gas particles, distributed into specific (and 
distinct) parts of real space. But surjection means we have unique offspring, being assigned to parents 
who use identical or isomorphic means of process. The assumptions of the surjection are thus the 
opposite of what is required compared to standard academic statistics. But the statistics of SNSK are 
exactly what is required: unique objects (as individuals in the offspring population), and similar 
means of treatment by the parents.  

This means that by using that we have a surjection, the SNSK allows us to make important 
predictions of what may exist in real ethnographies, which can also be verified. Thus [84] used the 
changes in the structural numbers as listed in the table at [3 appendix 2] to predict the changes in 
Western European population statistics from about AD 1000 to about AD 1950. Generally, early in 
that period we had relatively higher structural numbers in Western Europe, since for example, the 
Catholic Church had higher degrees of prohibition of relatives, thus higher structural numbers, thus 
higher values of ns. By the middle of the twentieth century, there became a much higher percentages 
of the population following more “Protestant” rules, which in general had lower values of s, thus 
lower values of ns. [84] followed these changes, and also discussed what may have happened when 
the black-plague took place–it may be that when that happened, there were also lower densities of 
marriageable people in local populations, but they needed a high ns. The ability of the population to 
create that ns what thus not physically present. The Protestant changes took place in that period, and 
also lead to a new marriage rule lowering the ns for the newer Protestant populations. We do not 
claim here that our statistics tell use exactly what changes, or that what we call “Protestant” were the 
only choices. But [48] may include that the possible changes among the available sets of histories at 
time t, might also limit what choices are available, and thus may limit what alternate forms of 
histories might be possible. The reader might also look at examples such as [87,88] which discuss not 
only at the values of ns and ps but also how the distributions of choices (the mechanics of the 
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application of the d−1 devices in our diagram) move parts of the certain other cultural practices when 
a village might be subdividing. There are thus many things that need to be better understood in 
ethnographies, which can be better explained when the use of proper statistics (here, using SNSK) is 
allowed.  

[48], as noted above, also discusses that some combinations of possible histories might be unable 
to combine with one another, so not all means of potential cultural evolution might be possible. There 
are probably less than 20 distinct forms of how kinship systems may be created (though there may 
be thousands of cultures with distinct languages in which they are expressed); and most of those 
systems have structural numbers at or well under s = 16. Thus from [48] not all combinations of 
possible cultures create a lattice whose top element creates a lattice whose top-group order is perhaps 
well above s = 16. Empirically therefore there may be no such systems. Another way to state this is 
that there may be sets of possible histories, not all of which can be allowed to find each other from 
within that particular set of histories. That result may create changes among histories in which some 
ranges of values of n(t) and of p(t)–and thus their consequences in predicting r(t) (and thus from 
Equation (4), R(t)), might not be allowed. The homotopy of these systems may therefore tell us a lot 
on which kinds of cultural systems might evolve into each other, and which, if any, might not evolve.  

Many ethnographic studies discuss each cultural system as if there is only one history present 
in that population. In many ethnographic papers, therefore their discussion does not talk of 
“probabilities” that a culture is in some specific history; they assume a specific history, so no 
probabilities are needed. Applications of the same history at each instance of time also may imply 
that there is no change in demographics of the population: if the same structural number repeats, 
then the predictions of n(t) and p(t) do not change; a specific history has some structural number s, 
so the forecasts remain at n(t) = ns and p(t) = ps; see also [47]. But when probabilities are needed (i.e., 
that more than one history be present in a society) then in [48] the probabilities use Pauli coefficients; 
this is used in part because complex Hilbert spaces also simplify following specific paths.  

The forms of mathematics found in Equations 1 through 4 also yield non-commutative forecasts. 
While some of our equations look like similar forms in quantum analysis, our results are not 
equivalent. One version of quantum mechanics [90–93] uses a “consistent histories” approach, in 
which the same history is consistently followed in each generation of a descent structure. This 
approach defines a descent map (called “descent” in quantum theory as well), which, like the descent 
map of genetics or cultural theory, is a partial order. In physics, the physical object in each instance 
of t+1 is a copy of the same object as in time t; only its momentum or location may have changed. 
Changing whether we measure first momentum or first location causes the problem of uncertainly in 
physics, despite the assumed consistency. But in cultural theory the objects at t+1 are descendants of 
the objects at t—they are distinct objects, not the same objects as assumed in physical theory. [48] 
found that when objects in culture theory are non-commutative, our equations forecast r(t) ≠ 0 and 
thus also that generation growth (or decline) occurs. But the differences when finding results in 
cultural theory are directly computable. Thus, while Equations 1 through 4 are based on non-
commutative cultural theory, and we get significant changes in values of e(t), n(t) and p(t), but we do 
not find uncertainly. 

(In the previous three paragraphs we do not discuss similar details of how biological evolution 
may also occur or be limited by the mechanics of the mathematical groups required. But somewhat 
similar problems also occur in population genetics. For example, some sequences of associations of 
certain alleles, might limit whether certain additional things can be added to that code. We assume 
that such details are better understood in normal treatment of genetics, hence we do not need to 
discuss then here; while these ideas for forming cultural systems are less often discussed.) 

7. Forecasting Evolution 

The evolutionary biologist Wilson published his most current book, Genesis [94], in which the 
title apparently intends to forecast the next stage in evolution of life. It is apparent even from a 
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sympathetic reviewer [95] that Wilson reaches no such conclusion. But Wilson does what an 
evolutionary biologist specializing in social insects might do: he uses the long history of evolution of 
social insects to “model” what may happen next with the much shorter and later span of evolution 
of humans.  

In our own discussion in Parts 4 and 6 we also discuss the possibility of forecasting. Can we use 
the notion of surjection to assist prediction in biological systems? Pauling [97] in 1940 used the 
mathematics of the chemical bond for description of the molecules used in evolution. Petoukhov [98] 
p. 26 says that Pauling’s “… presentation form is based on symmetric matrices, … Symmetrical 
matrices are related with the theory of resonance of L. Pauling …”. Part 4 of this paper tells us that 
any configuration that follows the constraints of Part 4 can also create symmetrical matrices (in fact, 
mathematical groups) that may cause evolution in their direction, so long as they follow the group 
requirements in Part 4. The proof of prediction that would simply be to demonstrate it has occurred, 
which it has (see also citations of Part 4). To the knowledge of this author, using symmetrical 
configurations to describe biological evolution was first described Schroeck [89] pp. 223–253, in bats. 
Schroeck is not describing either the loci nor the alleles of evolution, but he is demonstrating the 
results. [89] showed that bats identified other objects in flight by computations inside the bat, and 
when the speeds of object found by the bat became fast enough, by using quantum mechanical 
devices inside the bat to identify and follow the objects tracked. As the mechanisms of the other flying 
animals became fast enough, the limits (and result) of their locational devices was that “Detailed 
analysis … shows that bats perform at the quantum limit of uncertainty relations …” Schroeck then 
continues [89] pp. 252–253 by proposing that “… we observe that joint time/frequency spectrograms 
are being used as a standard analysis procedure in studying biological and social systems. We list the 
‘pictures’ of bird songs in many popular bird identification manuals, as well as the identification of 
vocal expressions of stump-tailed macaques … as examples.” In fact, what Schroeck has stated is that 
the biological results are determined by the requirements of the physics. There is actually nothing 
unique in this, except it shows that “simply” the mechanics allowed by relations allowed by Part 4 
have that result. (Continuing this discussion see also our citations below on Kauffman discussing 
communications among species.) 

Returning to Wilsons notion, [95] says Wilson might better have compared the evolution of 
social insects to the evolution of human communications from understanding kinship (which is the 
opposite of what Wilson asserts). Read [96] shows that the (verbal!) notions of kinship analysis derive 
deeply in descriptions of human society. Dinosaurs, including modern birds, began many millions 
of years ago to use verbal communication with each other, which is also a primary feature of human 
evolution and human society. Indeed if humans did not have verbal communication, how could we 
write the sections of this paper describing human ability to describe human society using kinship 
terminologies–which are part of human communication systems–and to then discuss the role of those 
using mathematical groups to understand the demography of human societies? But we have also 
found from the example described by Schroeck, that biological evolution is based on physical 
mechanical devices. And in much of physical theory, forecasting future conditions are in large part 
due to their symmetry, given their mathematical groups.  

So let us restate the issue here: do the possible alleles that may be formed under mechanics 
allowed by our Part 4 citations, necessarily cause specific forms that define future evolution? That is 
not how we normally state definitions of potential evolution; at best, it places the roles of the 
computations of Part 3 in demonstrating the paths of particular results; but it is what Part 4 can create, 
that determines the eventual results of evolution. Consider the results Hirschleifer [99]. Hirshleifer 
was an economist who showed that the logic of economic evolution (in effect, classical physical 
dynamics, as used in the computations of the Part 3 predictions) could allow biology to favor 
“sacrificial” individuals—“altruistic evolution” was thus found to be favored by ordinary classical 
mechanics devices. Indeed much of our current understanding of how Darwinian theory explains 
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human culture, and how human creativity using mental processes causes social evolution, are 
fundamentally due to Hirshleifer [99]; see also [100].  

Thus biological evolution, as summarized above by Schroeck, also allows us to believe that 
human logical abilities (a result of biological evolution) can thus also cause human “social” evolution. 
Methods of how communication can occur [101] in biological evolution are very diverse; for example 
[101], Chapter 12 includes tweaks as animals move, which are very different from human verbal 
communications [101] Chapters 13 and 14. Once some biological entity has communication 
capability, it is only a matter for time before some individual(s) of that species can use them to create 
languages, including mathematics; see Ezhkova [102,103]. This speculation is also proven since such 
things are already widely present—certainly in humans; and recent work shows birds [104] and other 
citations verify Schroeck’s thoughts; other species may have at least parts of it. Kauffman [105,106] 
argues that evolution should also look for means of communication among species, says that “simple 
and complex systems can exhibit power full self-organization”, but that “… no body of thought 
incorporates self-organization into the weave of evolutionary theory” [105] p. vii; see also Mayr and 
Provine [107]. But Part 4 was formed by understanding that we have a surjection; since surjection 
also implies the mathematics of group theory (Part 4), therefore understanding surjection directly 
incorporates “self-organization” by use of mathematical groups.  

Human logic (also a product of biological evolution) can already forecast results of much of 
mathematics of physics. The human brain (a product of biological evolution) can forecast future 
versions of many domesticated crops and animals; indeed so have other species that have “tended” 
crops. Then why can’t humans forecast (indeed create) their own cultural and biological evolution? 
Humans themselves of course are part of evolution; see also [108].  

8. Conclusions 

Physical mechanics (Part 4) allows us to describe the objects on which evolution can take place, 
while genetic statistics (Part 3) describes “only” the means of demonstrating empirical evolutionary 
effects in actual use. We need to understand both forms of prediction, and to understand how they 
relate to each other. But also, evolution may only occur only in specific directions implied by what 
Part 4 devices can create and allow.  

The foundation question is thus: given the things that Part 4 allows, do those necessarily cause 
the results of evolution? Can the mechanical foundations of biological evolution (Part 4) can lead us 
(humans!) to forecast how future biological, and cultural, evolution might occur? Can we (humans) 
predict them? The answers might well be “yes”.  

Definitions 

generation–a defined limited but continuous duration of time, called t 

members–a non-empty set of “individuals” at time of some species alive at time t 

parents--a pair of members of the same generation who are assigned as creating new individuals at t 

offspring–a set of individuals who are created in generation t + 1 from the parents in t 

evolutionary process–a process that creates, or changes what may be created, by means of defined 

interactions between two individuals of the same generation 

genetics–an evolutionary process in which the parents are creating new individuals by means of 

transmission of genes: 

the position in the genome where there are or can be variants is a locus. 

the alternative forms of DNA at the position of a locus are alleles. 

mathematical anthropology–a mathematical representation of a cultural evolutionary process in 

which the parents are identified by cultural rules and to which offspring are assigned. 
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surjection–a collection of two sets of non-empty objects P and O, where P ∩ O = 0, and where each 

member of P has at least one member of O linked to it. (Note therefore that the members of P can be 

called “parents” and the members of O can be called “offspring”.) 

(mathematical) group–a non-empty set G with an operation + such that for each g in G: 

an object o in G such that for every g in G, g + o = o + g = g; 

an object in G called identity or I; 

for each g in G is an member g−1 in G such that for each g, g + g−1 = g−1 + g = I; 

for any pair of objects g, h in G, g + h and h + g are members of G, and g + h = h + g. 

describing or transmitting cultural information: 

are used to represent a particular cultural rule, also called a history. 

the proportion of each generation population Gt using history  is vt. 

each cultural rule of marriage has a structural number s, which is set by the size of the 

minimal group representing that rule (page 4). 

let s be the structural number of history . 

let ns = average family size (average number of offspring to a set of parents in time period t) 

of a system with structural number s. 

Define the proportion of (socially ascribed) reproducing females as ps. Let ps = 2/ns. 

The specific values of ps, and ns are presented in [3 appendix 2] 
Part 6, Equations (1) through (4) show how to predict for each t: 

the value of the expected surviving average family size n(t); 
average percent of assumed reproducing females p(t); 
average expected change in population growth r(t); 
The demographics papers [80–82] also use a notation r(t); since we use that here for a different 

concept, we thus need a distinct representation for that demographic result. We thus use R(t) 
for the demographic concept described in [80–82] as r(t). The relation between r(t) and R(t) 
are given by Equation (4). 

Mathematical diagram: 
Let: Mean: 
D biological population operators of the population at the indexed time t, 
Gt is the population size at time t 
Mt  the sets of married or biologically mating couples at time t, with Mt  G t 
Bt+1 a partition of Gt+1 into sets of offspring with the same parents, with Bt+1  G t+1 
 a surjection corresponding to assignments of Mt, 
 a partition of Gt+1 showing kin groups of a population within a generation t+1, as assigned 
 by the genetic or cultural rules of marriage 
d−1 a surjection corresponding to descent 
d an injection corresponding to ancestor 

so that the d−1 surjection maps the progress of population change showing sets of descendants 

in generation t + 1 onto the sets of their parents in generation t. 

This gives us a diagram summarizing our mathematical representations: 
D 

Gt  Gt+1 
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Mt  Bt+1 

d−1 
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