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Classic thermodynamics

Ù phenomenological theory for average values of heat and work

Ù many applications on all length scales:

phase transitions, chemical reactions, astrophysics...

Ù only quasistatic processes completely describable

Ù real processes: characterized by irreversible entropy production Σ

Purpose:

Ù understand and improve thermodynamic devices

Ù minimize dissipation in heat engines
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What we usually think of:

First operating Diesel engine (MAN Museum, Augsburg, Germany)
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Rise of the quantum information age

IBM Q Experience

Google Sycamore

Microsoft – integrative hardware/software approach

Rigetti – hybrid classical/quantum approach
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Outline

Quantum thermodynamics and quantum work

Ù Quantum work and the two time measurement approach

Ù Jarzynski equality and work fluctuations

Thermodynamics and quantum information

Ù Stochastic thermodynamics in quantum computers

Ù New paradigm for error correction and thermodynamic cost
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Quantum thermodynamics: Issues

Ù Mathematical description with operators, e.g.

energy Ù Hamilton operator
probability distribution Ù density operator

Ù Operators not commuting

Ù NO trajectories

Ù Work not a state function Ù no work operator

Ù Work complicated to measure
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Thermodynamics of isolated quantum systems

Ù Driven Schrödinger dynamics

−i~ ∂

∂t
|Ψ〉 =

[
p2

2m
+ V (αt, x)

]
|Ψ〉

Ù External control parameter αt
Volume of piston, length of RNA molecule, frequency of trap, . . .

Ù Isolated system, thus no heat exchanged with environment

∆E = 〈W 〉 and 〈Q〉 = 0

Ù System initially prepared in Gibbs state,

ρ0 =
∑
n

e−β En(α0)

Z(α0)
|n(α0)〉〈n(α0)|
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Quantum Jarzynski equality

Problem: Notion of classical trajectory not applicable!

Solution: Two-time energy measurements

Campisi, Hänggi, & Talkner, RMP 83, 771 (2011)

Quantum work:

Wqm[|m(ατ )〉; |n(α0)〉] = Em(ατ )− En(α0)

Work distribution:

Pqm(W ) =
∑∫
m,n

δ (W −Wqm[|m(ατ )〉; |n(α0)〉]) pτm,n p0
n

Consequences:

Ù Jarzynski equality: 〈exp (−βHH(τ)) exp (βH(0))〉 = exp (−β∆F )

Ù Conceptually simple notion of quantum work
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Two-time measurement approach: Success story

Analytical calculation of work distribution:

Ù Simple systems:
driven harmonic oscillator, particle in time-dependent box, Landau-Zener model,. . .

Ù Many particle systems:
quantum Ising chains, non-interacting bosons and fermions,. . .

Ù Relativistic systems:
Dirac equation, quantum field theories,. . .

Bartolotta & Deffner, PRX 8, 011033 (2018) [and references therein]

Experimental developments:

Ù Verification of quantum Jarzynski:
ion traps, NMR,. . .

Ù Quantum engines:
single ion heat engine, quantum optomechanics,. . .
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Where do we go from here?

What we have:

Ù Emerging framework for thermodynamic of quantum systems

Ù First experimental implementation of novel technology

What we want:

Ù Quantify resources for quantum computing

Ù Thermodynamic control strategies for error correction

Where we start:

Ù Apply stochastic thermodynamics to quantum information

Ù Tailor conceptual framework for available hardware
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DWave – a “quantum” annealer

Paradigm: Adiabatic quantum computing

Ù Prepare quantum system in ground state of simple Hamiltonian

Ù Drive adiabatically: solution from “final” ground state

Problems and issues:

Ù Driving infinitely slowly (much slower that largest gap)

Ù Need unitary dynamics (very good insulation)
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Experimental protocol on DWave
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Quantum Ising model in transverse field

Hamiltonian:

H(t)/(2π~) = −g(t)

L∑
i=1

σxi −∆(t)

L−1∑
i=1

Jiσ
z
i σ

z
i+1

Initial and final observables (energy):

Ωi =

L∑
i=n

σxn − I and Ωf =

L−1∑
n=1

σznσ
z
n+1 ,

Ideal probability distribution: P (∆ω) =
∑
m,n

δ (∆ω −∆ωn,m) pm→n

pn = P(|ωn|) =

{
1 if |ωn| = L− 1,
0 otherwise.
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Implementation on DWave

Step 1:

Ù “Believe” initial state: ρ0 = |→〉〈→ |
Ù “Believe” that DWave is described by quantum Ising model

Step 2:

Ù Choose connections on the chimera graph randomly

Ù Run N = 106 times for different τ and L

Step 3:

Ù Compare histogram of outcome with ideal distribution

Ù Compute average exponentiated quantum work
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Results: DWave 2X and 2000Q

Gardas & Deffner, Sci. Rep. 8, 17191 (2018)
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Results: fluctuation theorem
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Gardas & Deffner, Sci. Rep.8, 17191 (2018)

Ù Jarzynski equality violated
(not thermodynamically optimal)

Ù Dynamics not unitary
(or rather not unital)

Ù Environmental noise
(decoherence and dissipation)

Ù Finite-time excitations
(need shortcut to adiabaticity)
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Take-home-message

Ù First experimental systems with potential for quantum supremacy

Ù Emerging framework for thermodynamics of quantum information

Ù Quantum thermodynamics: exciting field with many open questions

quthermo.umbc.edu
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The book has arrived!!
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