



# Conference Proceedings Paper Symplectic/Contact Geometry Related to Bayesian Statistics

# Atsuhide Mori

Department of Mathematics, Osaka Dental University; mori-a@cc.osaka-dent.ac.jp

Received: date; Accepted: date; Published: date

Abstract: In the previous work, the author gave the following symplectic/contact geometric description of the Bayesian inference of normal means: The space  $\mathbb H$  of normal distributions is an upper halfplane which admits two operations, namely, the convolution product and the normalized pointwise product of two probability density functions. There is a diffeomorphism F of  $\mathbb{H}$  that interchanges these operations as well as sends any e-geodesic to an e-geodesic. The product of two copies of  $\mathbb H$  carries positive and negative symplectic structures and a bi-contact hypersurface N naturally generating the symplectic structures. The graph of F is Lagrangian with respect to the negative symplectic structure. It is contained in the bi-contact hypersurface N. Further, it is preserved under a bi-contact Hamiltonian flow with respect to a single function. Then the restriction of the flow to the graph of *F* presents the inference of means. The author showed that this also works for the Student *t*-inference of smoothly moving means and enables us to consider the smoothness of a data smoothing. In this presentation, we foliate the space of multivariate normal distributions to construct a pair of regular Poisson structures by using the Cholesky decomposition of the covariance matrix. This generalizes the above symplectic/contact description to the multivariate case. The ultimate aim of this research is to construct a relativistic space-time consisting of (tuples of) distributions, since anything can learn by changing its inner distribution in the Bayesian view of the world.

**Keywords:** information geometry; Poisson structure; symplectic structure; contact structure; foliation; Cholesky decomposition

## 1. Introduction

We work in the  $C^{\infty}$ -smooth category. A manifold U embedded in the space of probability distributions inherits a separating premetric  $D : U \times U \to \mathbb{R}_{\geq 0}$  from the relative entropy, which is called the Kullback-Leibler divergence. The geometry of (U, D) is studied in the information theory. The information geometry [1] concerns the infinitesimal behavior of D. In the case where U is the space of univariate normal distributions, we regard U as the half plane  $\mathbb{H} = \mathbb{R} \times \mathbb{R}_{>0} \ni (m, s)$ , where m denotes the mean and s the standard deviation. Since the convolution of two normal densities is a normal density, it induces a product \* on  $\mathbb{H}$ , which we call the convolution product. On the other hand, since the pointwise product of two normal densities is proportional to a normal density, it induces another product  $\cdot$  on  $\mathbb{H}$ , which we call the Bayesian product. *The first half of this presentation is devoted to the geometric description of Bayesian statistics including this product.* 

On the other hand, the current statistics lies not only in probability theory, but also in information theory. The author [5] found a symplectic description of the statistics of univariate normal distributions which is simultaneously based on these theories. Precisely, on the product  $\mathbb{H} \times \mathbb{H}$  with coordinates

(m, s, M, S), we take the positive and negative symplectic forms  $d\lambda_{\pm}$  with the fixed primitives  $\lambda_{\pm} = \frac{dm}{s} \pm \frac{dM}{S}$ . Then the Lagrangian surfaces

$$F_{\varepsilon} = \left\{ (m, s, M, S) \in \mathbb{H} \times \mathbb{H} \mid \frac{m}{s} + \frac{M - \varepsilon}{S} = 0, \ sS = 1 \right\} \quad (\varepsilon \in \mathbb{R})$$

with respect to  $d\lambda_{-}$  foliate the hypersurface  $N = \{sS = 1\}$ . For each  $\varepsilon \in \mathbb{R}$ , the leaf  $F_{\varepsilon}$  is the graph of a diffeomorphism of  $\mathbb{H}$  which sends any geodesic to a geodesic with respect to the e-connection. Further, in the case where  $\varepsilon = 0$ , the diffeomorphism interchanges the products  $\ast$  and  $\cdot$ , namely,

$$\begin{cases} (m, s, M, S) \in F_0 \\ (m', s', M', S') \in F_0 \end{cases} \Rightarrow \begin{cases} ((m, s) * (m', s'), (M, S) \cdot (M', S')) \in F_0 \\ ((m, s) \cdot (m', s'), (M, S) * (M', S')) \in F_0. \end{cases}$$

Thus, the iteration of \* in the first factor of  $\mathbb{H} \times \mathbb{H}$  corresponds to that of  $\cdot$  in the second factor. The primitives  $\lambda_{\pm}$ , the hypersurface N, the foliation  $\{F_{\varepsilon}\}_{\varepsilon \in \mathbb{R}}$  and the leaf  $F_0$  are preserved under the diffeomorphism  $\varphi_{\zeta} : (m, s, M, S) \mapsto (\zeta m, \zeta s, \zeta^{-1}M, \zeta^{-1}S)$  for any  $\zeta \in \mathbb{R}_{>0}$ . This map appears in the construction of Hilbert modular cusps by Hirzebruch [3]. Further the function  $f : \mathbb{H} \times \mathbb{H} \to \mathbb{R}_{\geq 0}$  which is defined by f(m, s, M, S) = D(m, s, m', s') for  $(m', s', M, S) \in F_0$  is also preserved under  $\varphi_{\zeta}$ . On the other hand, the hypersurface N inherits the mutually transverse pair of the contact structures  $\ker(\lambda_{\pm}|_N)$ , which we call the bi-contact structure. Let X be the contact Hamiltonian vector field of  $\lambda_{+}|_N$  with respect to the function  $\frac{m}{s}$ , i.e., the unique contact vector field satisfying  $\lambda_{+}|_N(X) = \frac{m}{s}$ . Then X is also the contact Hamiltonian vector field of  $\lambda_{-}|_N$  with respect to the same function  $\frac{m}{s}$ . We call such a vector field a bi-contact Hamiltonian vector field. There is a non-trivial bi-contact Hamiltonian vector field on  $(N, \lambda_{\pm})$  which is tangent to the leaf  $F_0$ . It is the one for the above function  $\frac{m}{s}$  up to constant multiple. We may regard its restriction to  $F_0$  as a vector field on the first (resp. the second) factor is tangent to a foliation by e-geodesics, and each leaf is closed under \* (resp ·). Particularly, the

logistic time flow of the vector field interpolates the above iteration of \* (resp. ·). *In the second half of this presentation, we generalize the above description to the multivariate case.*It is straightforward except that we use the Cholesky decomposition to foliate the squared space of *n*-variate normal distributions. Here the leaves are 4*n*-dimensional submanifolds carrying two symplectic structures. They form a pair of Poisson structures on the squared space. The author conjectures that a similar foliation of the squared space of certain relativistic distributions can explain

the "compactification" in physics without artificially shrinking extra dimensions.

## 2. Results

#### 2.1. Bayesian information geometry

In this subsection, we generalize the setting of the information geometry. Take a smooth family of volume forms with finite total volumes on  $\mathbb{R}^n$ . We regard each of the volume forms as a point of a manifold  $\mathcal{M}$ , namely, a point  $y \in \mathcal{M}$  presents a volume form  $\rho_y d$ Vol smoothly depending on y. Let  $\mathcal{V}$ be the space of volume forms with finite total volumes on  $\mathcal{M}$ . We take a volume form V in  $\mathcal{V}$ . Given a point z on  $\mathbb{R}^n$ , we regard the value  $\rho_y(z)$  of the density as a function  $\rho(z) : y \mapsto \rho_y(z)$ , and multiply the volume form V by the function  $\rho(z)$ . This defines the updating map

$$\varphi: \mathbb{R}^n \times \mathcal{V} \ni (z, V) \mapsto \rho(z) V \in \mathcal{V}.$$
<sup>(1)</sup>

We notice that a volume form with finite total volume is proportional to a probability measure. Thus the function  $\rho(z)$  is proportional to the likelihood, and the updating 1 presents Bayes' rule.

A proper subset  $\widetilde{\mathcal{U}} \subset \mathcal{V}$  is called a (generalized) conjugate prior if it satisfies

$$\varphi(\mathbb{R}^n \times \widetilde{\mathcal{U}}) \subset \widetilde{\mathcal{U}}.$$
(2)

Suppose that we have a conjugate prior  $\widetilde{\mathcal{U}}$  which is a smooth manifold, and further that, by using the hypersurface  $\mathcal{U} = \{V \in \widetilde{\mathcal{U}} \mid \int_{\mathbb{R}^n} V = 1\}$ , it can be written as  $\widetilde{\mathcal{U}} = \{kV \mid V \in \mathcal{U}, k > 0\}$ . We define on  $\widetilde{\mathcal{U}}$  the following "distance"  $\widetilde{D}$ , which satisfies non of the axioms of distance.

$$\widetilde{D}(V_1, V_2) = \int_{\mathbb{R}^n} V_1 \ln \frac{V_2}{V_1} \quad \text{(the relative entropy)}$$
(3)

Note that the restriction  $\widetilde{D}|_{\mathcal{U}\times\mathcal{U}} = D$  satisfies the separation axiom, and is called the Kullback-Leibler divergence. We write the quadratic term of the Taylor expansion of  $\widetilde{D}(P, P + dP) + \widetilde{D}(P + dP, P)$  as  $\sum_{i,j} \widetilde{g}_{ij} dP^i dP^j$ , where  $\widetilde{g}_{ij} = \widetilde{g}_{ji}$ . Suppose that  $\widetilde{g} = [\widetilde{g}_{ij}]$  is a metric on  $\widetilde{\mathcal{U}}$ . Let  $\widetilde{\nabla}^0$  be the Levi-Civita connection with respect to  $\widetilde{g}$ . We write the cubic term of the expansion of  $3\widetilde{D}(P, P + dP) - 3\widetilde{D}(P + dP, P)$  symmetrically as  $\sum_{i,j,k} \widetilde{T}_{ijk} dP^i dP^j dP^k$ . This defines the line of (generalized)  $\alpha$ -connections  $\widetilde{\nabla}^{\alpha} = \widetilde{\nabla}^0 - \alpha \widetilde{g}^* \widetilde{T}$  with affine parameter  $\alpha \in \mathbb{R}$ , where  $\widetilde{g}^*T$  denotes the contraction  $\sum_l \widetilde{g}^{kl} \widetilde{T}_{ijl}$  by the contravariant metric  $g^{-1} = [g^{ij}]$ . Note that  $\widetilde{\nabla}^{\alpha}$  has no torsion. Restricting all of the above notions with tilde to the hypersurface  $\mathcal{U} \subset \widetilde{\mathcal{U}}$ , we obtain the notions without tilde in the usual information geometry[1]. Here  $\mathcal{U}$  can be identified with a space U of probability distributions.

## 2.2. The geometry of normal distributions

In this subsection we consider the space *U* of multivariate normal distributions. The pair of a vector  $\mu = (\mu_i)_{1 \le i \le n} \in \mathbb{R}^n$  and an upper triangular matrix  $C = [c_{ij}]_{1 \le i,j \le n} \in Mat(n, \mathbb{R})$  with positive diagonal entries determines an *n*-variate normal distribution by declaring that  $\mu$  presents the mean and  $C^T C$  the Cholesky decomposition of the covariance matrix. We put

$$\sigma_i = c_{ii}$$
 and  $r_{ij} = \frac{c_{ij}}{c_{ii}}$   $(i, j \in \{1, \dots, n\})$ , i.e.,  $C = \operatorname{diag}(\sigma)[r_{ij}]$ .

Note that  $[r_{ij}]$  is unitriangular, i.e., it is a triangular matrix whose diagonal entries are all 1. Considering  $\sigma \in \mathbb{R}^n$  and  $r = (r_{ij})_{1 \le i < j \le n} \in \mathbb{R}^{n(n-1)/2}$  as parameters, we can write the probability density of the *n*-variate normal distribution at  $P = (\mu, \sigma, r) \in U = \mathbb{R}^n \times (\mathbb{R}_{>0})^n \times \mathbb{R}^{n(n-1)/2}$  as

$$p(x) = \frac{1}{\sqrt{(2\pi)^n}|\sigma|} \exp\left(-\frac{1}{2} \left\|C(\sigma,r)^{-\mathrm{T}}(x-\mu)\right\|^2\right) \quad (x \in \mathbb{R}^n).$$

Then the relative entropy defines the premetric

$$D(P, Q = (\mu', \sigma', r')) = \frac{\|C(\sigma', r')^{-T}(\mu' - \mu)\|^2}{2} + \frac{\|C(\sigma, r)C(\sigma', r')^{-1}\|^2 - n}{2} - \sum_{i=1}^n \ln \frac{\sigma_i}{\sigma_i'}$$

where  $\|\cdot\|^2$  denotes the sum of squares (i.e.,  $\|\cdot\|$  the Frobenius norm). Thus,

$$D(P + \Delta P, P) = \frac{\|C^{-T}\Delta\mu\|^2}{2} + \frac{\|\Delta C C^{-1}\|^2}{2} + tr(\Delta C C^{-1}) - \ln|1_n + \Delta C C^{-1}|,$$

where  $1_n$  is the unit, and  $\Delta C$  the difference  $C(\sigma + \Delta \sigma, r + \Delta r) - C(\sigma, r)$ . Let  $r^{ij}$  be the entries of the inverse matrix of  $[r_{ij}]$ . Then we have

$$(\text{the } ij\text{-entry of } \Delta CC^{-1}) = \begin{cases} \frac{\Delta \sigma_i}{\sigma_i} & (i=j) \\ \frac{\sigma_i + \Delta \sigma_i}{\sigma_j} \sum_{k=i+1}^j r^{kj} \Delta r_{ik} & (i < j) \\ 0 & (i > j) \end{cases}$$

The Fisher information *g* appears in D(P + dP, P) as the quadratic form

$$g = \sum_{k=1}^{n} \left( \frac{1}{\sigma_k} \sum_{i=1}^{k} r^{ik} d\mu_i \right)^2$$
$$+ 2 \sum_{i=1}^{n} \left( \frac{d\sigma_i}{\sigma_i} \right)^2 + \sum_{l=1}^{n-1} \sum_{k=l+1}^{n} \left( \frac{\sigma_l}{\sigma_k} \sum_{i=l+1}^{k} r^{ik} dr_{li} \right)^2$$

which is presented by a block diagonal diag( $g_{\mu\mu}, g_{\sigma\sigma}, g_{rr,2}, \dots, g_{rr,n}$ ), where

$$g_{\mu\mu}\left(=\left[g_{\mu_{i},\mu_{j}}\right]\right)=\left[\sum_{k\geq i,j}\frac{r^{ik}r^{jk}}{\sigma_{k}^{2}}\right]=C^{-1}C^{-T},\quad g_{\sigma\sigma}=\operatorname{diag}\left(\left(\frac{2}{\sigma_{i}^{2}}\right)\right),$$

and  $g_{rr,l} = \left[g_{r_{li}r_{lj}}\right]_{i,j>l} = \left[\sigma_l^2 g_{\mu_i,\mu_j}\right]_{i,j>l} (l = 1,...,n-1)$ . Lowering the upper indices of the  $\alpha$ -connection by  $\sum_L g_{KL} \Gamma^{\alpha}{}_{IJ}{}^K = \Gamma^{\alpha}_{\{I,J\},K'}$  we have

$$\begin{split} \Gamma^{0}_{\{\mu_{i},\mu_{j}\},\sigma_{k}} &= -\Gamma^{0}_{\{\mu_{i},\sigma_{k}\},\mu_{j}} = \frac{r^{ik}r^{jk}}{\sigma_{k}^{3}}, \\ \Gamma^{0}_{\{\sigma_{i},\sigma_{i}\},\sigma_{i}} &= \frac{-2}{\sigma_{i}^{3}}, \\ \Gamma^{0}_{\{\mu_{i},\mu_{j}\},r_{ab}} &= -\Gamma^{0}_{\{\mu_{i},r_{ab}\},\mu_{j}} = \sum_{k=b}^{n} \frac{r^{bk}(r^{ia}r^{jk} + r^{ik}r^{ja})}{2\sigma_{k}^{2}}, \\ \Gamma^{0}_{\{r_{li},r_{lj}\},\sigma_{l}} &= -\Gamma^{0}_{\{r_{li},\sigma_{l}\},r_{lj}} = \sum_{k\geq i,j} \frac{-\sigma_{l}r^{ik}r^{jk}}{\sigma_{k}^{2}}, \\ \Gamma^{0}_{\{r_{li},r_{lj}\},\sigma_{k}} &= -\Gamma^{0}_{\{r_{li},\sigma_{k}\},r_{lj}} = \frac{\sigma_{l}^{2}r^{ik}r^{jk}}{\sigma_{k}^{3}} \quad (k \geq i, j), \\ \Gamma^{0}_{\{r_{li},r_{lj}\},r_{ab}} &= -\Gamma^{0}_{\{r_{li},r_{ab}\},r_{lj}} = \sigma_{l}^{2}\Gamma^{0}_{\{\mu_{i},\mu_{j}\},r_{ab}} \quad (a > l), \\ \Gamma^{0}_{\{I,J\},K} &= 0 \quad (\text{for the other choices of } \{I,J\} \text{ and } K), \end{split}$$

and

$$\begin{split} &\Gamma^{1}_{\{\mu_{i},\sigma_{k}\},\mu_{j}} = 2\Gamma^{0}_{\{\mu_{i},\sigma_{k}\},\mu_{j}'} \\ &\Gamma^{1}_{\{\sigma_{i},\sigma_{i}\},\sigma_{i}} = 3\Gamma^{0}_{\{\sigma_{i},\sigma_{i}\},\sigma_{i}'} \\ &\Gamma^{1}_{\{\mu_{i},r_{ab}\},\mu_{j}} = 2\Gamma^{0}_{\{\mu_{i},r_{ab}\},\mu_{j}'} \\ &\Gamma^{1}_{\{r_{li},r_{l_{j}}\},\sigma_{l}} = 2\Gamma^{0}_{\{r_{li},r_{l_{j}}\},\sigma_{l}'} \\ &\Gamma^{1}_{\{r_{li},\sigma_{k}\},r_{l_{j}}} = 2\Gamma^{0}_{\{r_{li},\sigma_{k}\},r_{l_{j}}} \quad (k \ge i,j), \\ &\Gamma^{1}_{\{r_{li},r_{ab}\},r_{l_{j}}} = 2\Gamma^{0}_{\{r_{li},\sigma_{ab}\},r_{l_{j}}} \quad (a > l), \\ &\Gamma^{1}_{\{I,J\},K} = 0 \quad \text{(for the other choices of } \{I,J\} \text{ and } K), \end{split}$$

and thus we also have

$$\begin{split} & \Gamma_{\{\mu_i,\mu_j\},\sigma_k}^{(-1)} = 2\Gamma_{\{\mu_i,\mu_j\},\sigma_j}^0, \\ & \Gamma_{\{\sigma_i,\sigma_i\},\sigma_i}^{(-1)} = -\Gamma_{\{\sigma_i,\sigma_i\},\sigma_i}^0, \\ & \Gamma_{\{\mu_i,\mu_j\},r_{ab}}^{(-1)} = 2\Gamma_{\{\mu_i,\mu_j\},r_{ab}}^0, \\ & \Gamma_{\{r_{li},\sigma_l\},r_{l_j}}^{(-1)} = 2\Gamma_{\{r_{li},\sigma_l\},r_{l_j}}^0, \\ & \Gamma_{\{r_{li},r_{l_j}\},\sigma_k}^{(-1)} = 2\Gamma_{\{r_{li},r_{l_j}\},\sigma_k}^0 \quad (k \ge i,j), \\ & \Gamma_{\{r_{li},r_{l_j}\},r_{ab}}^{(-1)} = 2\Gamma_{\{r_{li},r_{l_j}\},\sigma_k}^0 \quad (a > l), \\ & \Gamma_{\{I,J\},K}^{(-1)} = 0 \quad \text{(for the other choices of } \{I,J\} \text{ and } K\text{)}. \end{split}$$

The coefficients for the e-connection all vanish with respect to the natural parameter  $\theta = (C^{-1}C^{-T}\mu,\xi)$ , where  $\xi = (\xi_{ab})_{1 \le a \le b \le n}$  is the upper half of  $C^{-1}C^{-T}$ . Dually, the coefficients for the m-connection all vanish with respect to the expectation parameter  $\eta = (\mu, \nu)$ , where  $\nu = (\nu_{ab})_{1 \le a \le b \le n}$  is the upper half of  $C^{T}C + \mu\mu^{T}$ . Now we fix the third component r of  $(\mu, \sigma, r)$ , and change the others. We take the natural projection  $\pi : U = \mathbb{H}^{n} \times \mathbb{R}^{n(n-1)/2} \to \mathbb{R}^{n(n-1)/2}$  and modify the coordinates  $(\mu, \sigma)$  on the fiber  $L(r) = \pi^{-1}(r)$  into (m, s) in the next proposition. See the extended version for the proof.

**Proposition 1.** The fiber  $L(r) = \pi^{-1}(r)$  is an affine subspace of U with respect to the e-connection  $\nabla^1$ . It can be parametrized by affine parameters  $\frac{m_i}{s_i^2}$  and  $\frac{1}{s_i^2}$ , where  $m = [r^{ij}]^T \mu$  and  $s = \sqrt{2}\sigma$ .

The fiber L(r) satisfies the following two properties.

**Proposition 2.** L(r) is closed under the convolution \* and the normalized pointwise product  $\cdot$  between the probability densities.

**Proposition 3.** The fiber L(r) with the induced metric from g admits a Kähler complex structure.

We write the restriction  $D|_{L(r)}$  of the premetric *D* using the coordinates (m, s) as

$$D|_{L}((m,s),(m',s')) = \frac{1}{2} \sum_{i=1}^{n} \left\{ \left( \frac{m'_{i}}{s'_{i}} - \frac{m_{i}}{s'_{i}} \right)^{2} + \frac{s_{i}^{2}}{s_{i}^{\prime 2}} - 1 - \ln \frac{s_{i}^{2}}{s_{i}^{\prime 2}} \right\}.$$

We take the product  $U_1 \times U_2$  of two copies of the space U. Then the products  $L_1(r) \times L_2(R)$  of the fibers foliate  $U_1 \times U_2$ . We call this the *primary* foliation of  $U_1 \times U_2$ . For each  $(r, R) \in \mathbb{R}^{n(n-1)}$ , we have the coordinate system (m, s, M, S) on the leaf  $L_1(r) \times L_2(R)$ . From the Kähler forms

$$\omega_1 = 2\sum_{i=1}^{n} \frac{dm_i \wedge ds_i}{{s_i}^2}$$
 and  $\omega_2 = 2\sum_{i=1}^{n} \frac{dM_i \wedge dS_i}{{S_i}^2}$ 

respectively on  $L_1(r)$  and  $L_2(R)$ , we define the symplectic forms  $\omega_1 \pm \omega_2$  on  $L_1(r) \times L_2(R)$ . We fix their primitive 1-forms

$$\lambda_{\pm} = 2\sum_{i=1}^{n} \left( \frac{dm_i}{s_i} \pm \frac{dM_i}{S_i} \right).$$

The symplectic structures on the primary foliation defines a pair of regular Poisson structures.

Now we take the 2*n*-dimensional submanifolds

$$F_{\varepsilon,\delta} = \left\{ \frac{m_i}{s_i} + \frac{M_i - \varepsilon_i}{S_i} = 0, \ s_i S_i = \delta_i \ (i = 1, \dots, n) \right\}$$

of the leaf  $L_1(r) \times L_2(R)$  for  $\varepsilon \in \mathbb{R}^n$  and  $\delta \in (\mathbb{R}_{>0})^n$ . The *secondary* foliation of  $U_1 \times U_2$  foliates any leaf  $U(r) \times U(r)$  by the 3*n*-dimensional submanifolds  $F_{\varepsilon} = \bigcup_{\delta \in (\mathbb{R}_{>0})^n} F_{\varepsilon,\delta}$  for  $\varepsilon \in \mathbb{R}^n$ . The *tertiary* foliation of  $U_1 \times U_2$  foliates all leaves  $F_{\varepsilon}$  of the secondary foliation by the 2*n*-dimensional submanifolds  $F_{\varepsilon,\delta}$  for

$$N = \left\{ (m, s, M, S) \in L_1 \times L_2 \mid \prod_{i=1}^n (s_i S_i) = 1 \right\},\$$

which inherits the contact forms  $\alpha_{\pm} = \lambda_{\pm}|_N$ . We can prove the following propositions.

**Proposition 4.** With respect to the Kähler form  $d\lambda_{-}$ , the tertiary leaves  $F_{\varepsilon,\delta}$  are Lagrangian correspondences.

**Proposition 5.** For any  $\varepsilon$  and  $\delta$  with  $\prod_{i=1}^{n} \delta_i = 1$ ,  $F_{\varepsilon,\delta} \subset N$  is a disjoint union of n-dimensional submanifolds  $\{s = const\} \subset F_{\varepsilon,\delta}$  which are integral submanifolds of the contact hyperplane distribution  $\alpha_+$  on N.

For each point  $(\varepsilon, \delta) \in \mathbb{H}^n$ , we have the diffeomorphism  $\hat{F}_{\varepsilon,\delta} : \mathbb{H}^n \to \mathbb{H}^n$  sending  $(m', s') \in \mathbb{H}^n$  to  $(M, S) \in \mathbb{H}^n$  with  $(m', s', M, S) \in F_{\varepsilon,\delta}$ . We put

$$f_{\varepsilon,\delta}(m,s,M,S) = \frac{1}{2} \sum_{i=1}^{n} \left\{ \left( \frac{M_i - \varepsilon_i}{S_i} + e^{-h_i} \frac{m_i}{S_i} \right)^2 + e^{-2h_i} - 1 + 2h_i \right\},$$

where  $h_i = -\ln \frac{s_i S_i}{\delta_i}$ . Then we have

 $\delta \in (\mathbb{R}_{>0})^n$ . We take the hypersurface

 $D|_{L}((m,s),(m',s')) = f_{\varepsilon,\delta}((m,s),\hat{F}_{\varepsilon,\delta}(m',s')).$ 

For any  $\zeta \in (\mathbb{R}_{>0})^{2n}$ , we define the diffeomorphism

$$\varphi_{\varepsilon,\zeta}:(m,s,M,S)\mapsto (\zeta_{2i-1}m_i),(\zeta_{2i-1}s_i),(\varepsilon_i+\zeta_{2i}(M_i-\varepsilon_i)),(\zeta_{2i}S_i)),$$

which preserves the 1-forms  $\lambda_{\pm}$ . It is easy to prove

**Proposition 6.** In the case where  $\zeta_{2i-1}\zeta_{2i} = 1$  for i = 1, ..., n, the diffeomorphism  $\varphi_{\varepsilon,\zeta}$  preserves  $f_{\varepsilon,\delta}$ .

For each  $\varepsilon \in \mathbb{R}^n$ , we take the set  $f_{\varepsilon} = \{(f_{\varepsilon,\delta}, F_{\varepsilon,\delta}) \mid \delta \in (\mathbb{R}_{>0})^n\}$ , and consider it as a structure of the secondary leaf  $F_{\varepsilon}$ . Then we can prove

**Proposition 7.** For any  $\zeta \in (\mathbb{R}_{>0})^n$ , the diffeomorphism  $\varphi_{\varepsilon,\zeta}$  preserves the set  $f_{\varepsilon}$  for any  $\varepsilon \in \mathbb{R}^n$ . In the case where  $\zeta$  satisfies  $\prod_{i=1}^n (\zeta_{2i-1}\zeta_{2i}) = 1$ , the diffeomorphism  $\varphi_{\varepsilon,\zeta}$  also preserves the hypersurface N.

Hereafter we fix  $\varepsilon = 0$ . For any  $\delta \in (\mathbb{R}_{>0})^n$ , the diffeomorphism  $\hat{F}_{0,\delta}$  interchanges the operation

$$(m,s)*(m',s') = \left(m+m', \left(\sqrt{s_i^2+s_i'^2}\right)\right)$$

with the operation

$$(m,s) \cdot (m',s') = \left(\frac{m_i s_i'^2 + m_i' s_i^2}{s_i^2 + s_i'^2}, \frac{s_i s_i}{\sqrt{s_i^2 + s_i'^2}}\right).$$

Namely,

**Proposition 8.** If (m, s, M, S),  $(m', s', M', S') \in F_{0,\delta}$ , then

$$\begin{cases} ((m,s) \cdot (m',s'), (M,S) * (M',S')) \in F_{0,\delta} \\ ((m,s) * (m',s'), (M,S) \cdot (M',S')) \in F_{0,\delta} \end{cases}$$

A curve  $(m(t), s(t)) \in \mathbb{H}^n$  is a geodesic with respect to the e-connection  $\nabla^1$  if and only if  $\frac{m_i}{s_i^2}$  and  $\frac{1}{s_i^2}$  are affine functions of t for i = 1, ..., n.

**Definition 1.** We say that an e-geodesic  $(m(t), s(t)) \in \mathbb{H}^n$  is intensive if it admits an affine parametrization such that  $\frac{1}{s_i^2}$  are linear for i = 1, ..., n.

Note that any e-geodesic is intensive in the case where n = 1. We show

**Proposition 9.** Given an intensive e-geodesic  $(m(t), s(t)) \in \mathbb{H}^n$ , we can parametrize its image

$$(M(t), S(t)) = \left( \left( \varepsilon_i - \frac{m_i(t)\delta_i}{{s_i}^2} \right), \left( \frac{\delta_i}{s_i} \right) \right)$$

under the diffeomorphism  $\hat{F}_{\varepsilon,\delta}$  to obtain an intensive e-geodesic.

We have the hypersurface  $N = \left\{\prod_{i=1}^{n} s_i S_i = 1\right\} \subset \mathbb{H}^n$  carrying the contact forms  $\alpha_{\pm} = 2\sum_{i=1}^{n} \left(\frac{dm_i}{s_i} \pm \frac{dM_i}{S_i}\right)\Big|_N$ . We state the main result.

**Theorem 1.** The contact Hamiltonian vector field X of the restriction of the function  $\sum_{i=1}^{n} \frac{m_i}{s_i}$  to the hypersurface N on any leaf  $L_1(r) \times L_2(R) \approx \mathbb{H}^{2n}$  of the primary foliation of  $U_1 \times U_2$  with respect to the contact form  $\alpha_+$  on N coincides with that for the other contact form  $\alpha_-$ . The vector field X is tangent to the tertiary leaves  $F_{\varepsilon,\delta}$  and defines flows on them. Here each flow line presents a correspondence between intensive e-geodesics as is

described in Proposition 9. Particularly, for  $\varepsilon = 0$  and any  $\delta \in (\mathbb{R}_{>0})^n$ , the flow on the leaf  $F_{0,\delta}$  presents the iteration of the operation \* on the first factor of  $U \times U$  and that of the operation  $\cdot$  on the second factor.

Finally, we consider the transverse unitriangular group. We have the orthonormal frame

$$e_{ij} = rac{\sigma_i}{\sigma_j} \sum_{k=j}^n r_{jk} \partial_{r_{ik}} \quad (1 \le i < j \le n)$$

with the relations  $[e_{ij}, e_{kl}] = \delta_{il}e_{kj} - \delta_{kj}e_{il}$  of the unitriangular algebra. Using the dual coframe  $e^{ij}$ , the relations can be expressed as  $de^{ij} = \sum_{k=i+1}^{j-1} e^{ik} \wedge e^{kj}$ . The transverse section of the primary foliation of  $U_1 \times U_2$  is the product of two copies of the unitriangular Lie group, which we would like to call the bi-unitriangular group. We fix the frame (resp. the coframe) of the transverse section consisting of the above  $e_{ij}$  (resp.  $e^{ij}$ ) in the first factor  $U_1$  and their copies  $E_{ij}$  (resp.  $E^{ij}$ ) in the second factor  $U_2$ . The quotient manifold carries the (n-2)-plectic structure

$$\Omega = \sum_{i=1}^{n} e^{i,i+1} \wedge \cdots \wedge e^{i,n} \wedge E^{n-i+1,n-i+2} \wedge \cdots \wedge E^{n-i+1,n},$$

which satisfies  $d\Omega = 0$  and  $\Omega^n > 0$ . We notice that, in the symplectic case where n = 3, the quotient manifold admits no Kähler structure (see [2]).

### 3. Discussion

It is remarkable that the transverse symplectic 6-manifold is naturally ignored in the Bayesian inference on 3-dimensional normal prior. The author conjectures that a similar geometry of 3 + 1-dimensional relativistic prior has some relation to the M-theory. See [4] for a relation between Poisson geometry and matrix theoretical and non-commutative geometrical physics.

Conflicts of Interest: The author declares no conflict of interest.

## References

- 1. Amari, S. Information geometry and its applications; Springer Japan, 2016.
- 2. Cordero, L., Fernández, F. and Gray, A. Symplectic manifolds with no Kähler structure. *Topology* **1986**, 25-3, 375–380.
- 3. Hirzebruch, F. Hilbert modular surfaces. Enseign. Math. 1973, 19, 183-281.
- 4. Kuntner, N. and Steinacker, H. On Poisson geometries related to noncommutative emergent gravity. *J. Geom. Phys.* **2012**, *62-8*, 1760–1777.
- 5. Mori, A. Information geometry in a global setting. Hiroshima Math. J. 2018, 48-3, 291-306.
- 6. Mori, A. A concurrence theorem for alpha-connections on the space of t-distributions and its application. *Hokkaido Math. J.*, to be appeared.



© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).