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Abstract: Stochastic resonance is a subtle, yet powerful phenomenon in which a noise plays an
interesting role of amplifying a signal instead of attenuating it. It has attracted a great attention with a
vast number of applications in physics, chemistry, biology, etc. Popular measures to study stochastic
resonance include signal-to-noise ratios, residence time distributions, and different information
theoretic measures. Here, we show that the information length provides a novel method to capture
stochastic resonance. The information length measures the total number of statistically different states
along the path of a system. Specifically, we consider the classical double-well model of stochastic
resonance in which a particle in a potential V(x, t) = [−x2/2 + x4/4− A sin(ωt) x] is subject to an
additional stochastic forcing that causes it to occasionally jump between the two wells at x ≈ ±1. We
present direct numerical solutions of the Fokker-Planck equation for the probability density function
p(x, t) for ω = 10−2 to 10−6, and A ∈ [0, 0.2] and show that the information length shows a very
clear signal of the resonance. That is, stochastic resonance is reflected in the total number of different
statistical states that a system passes through.

Keywords: stochastic resonance; Fokker-Planck equation; probability density function; information
geometry; information length

1. Introduction

Mutual interaction between two systems is most effective when the time scales of the two match,
i.e., at the resonance. Time scale matching is manifested in a more subtle manner in stochastic resonance
[1–7] as it occurs when the escape time scale [8,9] due to stochasticity matches the modulation time
scale. One of the interesting consequences of stochastic resonance is that a noise plays an unusual
role of amplifying a signal instead of attenuating it. Since the pioneering work by Benzi et al. [1] and
Nicolis & Nicolis [2] (stochastic resonance could explain the relatively regular occurrence of ice ages
by weak periodic modulations in the Earth’s orbital eccentricity), it has attracted a great attention with
numerous applications in physics, chemistry, biology, etc. [3–7]. Most popular diagnostic quantities
that have been used to understand stochastic resonances include the signal-to-noise ratios, residence
time distributions, escape time [8,9] and different information theoretic measures e.g., [3,10–17].

The purpose of this paper is to introduce a new way of describing stochastic resonance from the
perspective of information geometry. We do this by mapping the evolution of a stochastic system to a
statistical space and interpret stochastic resonance in terms of the total number of statistically different
states that a system passes through in time over a cycle of the modulation. The latter is quantified
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by information length L [18–26]. Specifically, for a time-dependent Probability Density Function (PDF)
p(x, t) for a stochastic variable, we define the (time-dependent) correlation time τ(t) of the PDF by

E(t) ≡ 1
τ2 =

∫ 1
p(x, t)

[
∂p(x, t)

∂t

]2

dx. (1)

Since τ(t) in general depends on time t, we measure the infinitesimal time dt in unit of τ(t) and
integrate over the time [0, t] to calculate the total number of statistically different states as

L(t) ≡
∫ dt

τ(t)
=
∫ √∫ 1

p(x, t)

[
∂p(x, t)

∂t

]2

dx dt. (2)

Note that the differential element dL = dt/τ(t) measures the rate at which new information is being
generated during the evolution of p. We can relate L as the time integral of the infinitesimal relative
entropy (see Appendix A). Unlike the relative entropy or Kullback-Leibler divergence [27], which only
compares the initial and final PDFs, L is a path-dependent quantity between some initial and final
times.

For stochastic resonance which is a periodically forced problem, we calculate L over one period
T = 2π

ω as ∆L = L(t + T)−L(t). We show below that stochastic resonance is accompanied by a rapid
change in PDF, generating a new source of information. The latter is captured by ∆L.

2. Double-Well Potential Model

We consider an over-damped system for a stochastic variable x under the influence of a periodic
potential V(x, t) and a short-correlated Gaussian noise ξ

dx
dt

= − ∂

∂x
V + ξ = x− x3 + A sin(ωt) + ξ, (3)

where

V(x, t) = − x2

2
+

x4

4
− A sin(ωt) x, (4)

and
〈ξ(t)〉 = 0, 〈ξ(t1)ξ(t2)〉 = 2Dδ(t1 − t2). (5)

Here, x and t in Equation (3) are given in dimensionless form (in space and time); the angular brackets
in Equation (5) denote the average over ξ and 〈ξ〉 = 0; D in Equation (5) is the strength of the stochastic
noise ξ.

It is useful to note that for A = 0, two stable equilibrium points are located at x = ±1, separated by
an unstable point at x = 0. The potential barrier between the two wells has height V(0)−V(±1) = 1/4.
For 0 < A � 1, the stable equilibria move as x ≈ ±1 + (A/2) sin(ωt), while the depth of the wells
fluctuates as −1/4∓ A sin(ωt) to leading order in A. That is, A 6= 0 causes the asymmetry in the two
potential wells, each well being slightly deeper than the other one for half of the cycle. As D increases,
the probability of switching between the two potential wells increases with more particles overcoming
the potential barrier.

For a stationary potential V(x) with A = 0, the switching between the two wells is quantified by
the following Kramers rate [28]

rK =
1

π
√

2
exp

[
− 1

4D

]
. (6)

In the limit of D → 0, Equation (6) gives rK → 0, confirming no switching without ξ.
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To investigate numerically the effect of A, D and ω on stochastic resonance, we consider the
Fokker-Planck equation [29] for p(x, t) corresponding to Equation (3)

∂

∂t
p(x, t) = − ∂

∂x

((
x− x3 + A sin(ωt)

)
p(x, t)

)
+ D

∂2

∂x2 p(x, t). (7)

In the limit of the adiabatic or quasi-static approximation, p(x, t) is determined by the instantaneous
potential as

p = p0 exp
[
−V(x, t)/D

]
, (8)

where p0 is the normalization constant for
∫ +∞
−∞ p dx = 1.

For the results presented in the following, we solve Equation (7) numerically by using
second-order accurate finite differences in both space and time. We take a sufficiently large interval
in x as x ∈ [−3, 3] so that we can impose p = 0 boundary conditions at x = ±3. We check that the
total probability

∫ 3
−3 p dx = 1 within 10−7. We also use sufficiently small grid size ∆x = 10−3 and time

steps ∆t = π · 10−3 to ensure a good numerical accuracy.

3. Results

3.1. Probability Density Functions

We begin by presenting snapshots of the PDFs for small A = 0.04 and ω = 10−4 at the times t = 0,
T/4, T/2 and 3T/4, mod(T) in Figure 1 around x ≈ 1, where T = 2π

ω is the period of the oscillatory
force. Note that the behaviour around x ≈ −1 is exactly the same as that around x ≈ 1 by symmetry.

Notable in Figure 1 is the oscillation of the peak position in time as (A/2) sin(ωt) despite the fact
that the particle switching between the wells is not necessarily following the adiabatic approximation
(8). That is, for small ω, the behaviour within each well is almost adiabatic. In comparison, for large
ω = O(1), the potential does vary so quickly that the PDFs are not adiabatic, the peak positions
oscillating with an amplitude A/

√
4 + ω2 (see e.g., [7]). We also observe in Figure 1 that the widths of

the PDFs increases with D. While for D = 0.01 the PDFs are very close to Gaussian, for larger D = 0.1,
the PDF are not Gaussian in general.

Furthermore, while the amplitudes of p are of similar magnitude for small D = 0.01, they become
drastically different for larger D = 0.0324 and 0.1. In particular, for D = 0.0324, the PDFs at t = T/4
and 3T/4, and even t = 0 and T/2, are significantly different, with t = T/4 yielding a far higher peak
than t = 3T/4. These results suggest that

∫ ∞
0 p(x, t) dx can vary considerably throughout the cycle.
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Figure 1. The PDFs p(x, t) at four times throughout the cycle, with the numbers n = 0− 3 beside
individual curves corresponding to t = n T/4 mod(T). All three panels are for ω = 10−4 and A = 0.04,
and (a) D = 0.01, (b) D = 0.0324, (c) D = 0.1.

Figure 2 shows the maximum over the cycle of
∫ ∞

0 p(x, t) dx for ω = 10−2 to 10−6 and D ∈
[0.01, 0.1]. We can see clearly that if D is too small, this maximum remains essentially 0.5 since there is
no preference for one well over the other at any time in the cycle, and hence no synchronization. For
larger D however, the values suddenly rise and then slowly decrease again. For smaller ω the rise is
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more abrupt, and occurs at smaller values of D. For the gradual decrease after the maximum value has
been reached, all frequencies ω converge to the same curve.
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Figure 2. The maxima over the cycle of
∫ ∞

0 p(x, t) dx, as functions of the noise level D. The numbers 2
to 6 beside individual curves correspond to ω = 10−2 to 10−6. (a) A = 0.02, (b) A = 0.04. The thick
dashed curves show results from (10). The dotted vertical lines are at Dres given by (9) for ω = 10−2 to
10−6; note how well these values agree with the maxima over D of the corresponding curves.

To understand these results, we use ω = rK and solve ω = exp(−1/4D)/(π
√

2) for D = Dres to
obtain

Dres =
−1

4 ln(π
√

2 ω)
, (9)

where the subscript ‘res’ indicates the resonant value. In particular, we see in Figure 2 that the maxima
of the individual ω curves all occur very close to their corresponding Dres values.

In comparison, the thick dashed lines in Figure 2 show the equivalent results for the adiabatic
expression (8) obtained by numerically evaluating quantity

∫ ∞

0
exp

[
−V(x, T/4)/D

]
dx
/ ∫ +∞

−∞
exp

[
−V(x, T/4)/D

]
dx. (10)

That is, at t = T/4, when the asymmetry between the two wells is greatest, we evaluate the probability
of being in the lower well, according to the adiabatic PDF.

From Figure 2, we conclude that if D � Dres, then ω � rK. That is, when the modulation is
too rapid, the system cannot effectively respond, and the probability of being in either well remains
practically 0.5 throughout the entire cycle with no synchronization between the stochastic switching
and the modulation. In contrast, if D � Dres, then ω � rK. The imposed modulation is then so slow
that the adiabatic relation Equation (8) holds. And as the results from (10) show, Equation (8) exhibits
synchronization, and in particular stronger synchronization for smaller D, explaining why D should
be as small as possible, but not much less than Dres, which would switch the resonance off.

These results suggest that a resonant peak occurs only if a scan is done over the noise level D, as
presented above. If a scan is done over ω for a fixed D, then the ‘resonance’ becomes a simple on-off
phenomenon. This is because if ω � rK there is no synchronization; if ω � rK there is synchronization,
at whatever level (10) yields for the given D (and A), but no variation with ω, since (10) does not
involve ω.

3.2. Escape Times

A popular tool to study stochastic resonance is the escape time [8,9,29]. For this, we solve the
same Fokker-Planck equation (7) as before, but now only on the interval x ∈ [0, 3] with the boundary
condition p = 0 at x = 0. Due to the probability loss, p(x, t + T) = c p(x, t), where c < 1 is some factor
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that depends on the parameters D, ω and A, but is the same for each subsequent period once this
behaviour has emerged.

Figure 3 shows this reduction by a constant factor each period, starting from such initialized
solutions (rescaled so that they start out with

∫
p dx = 1 again). The top row shows the survival

probability G(t) =
∫ ∞

0 p(x, t) dx. The bottom row shows the escape rate W(t) = − d
dt G(t). For all

choices of D and A, we see that increasing either D or A yields a smaller c with more rapid loss of
particles.
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Figure 3. The top row shows G(t) =
∫ ∞

0 p(x, t) dx, and the bottom row the corresponding W(t) =

− d
dt G(t). All three solutions are for ω = 10−4, (a) D = 0.023, (b) D = 0.025, (c) D = 0.027, and

A = 0.02, 0.04 and 0.08 as indicated by the numbers beside individual curves.

3.3. Information Length

Figure 4 shows E in Equation (1) for the previous solutions from Figure 1. Recalling that the
position of the peaks varies as (A/2) sin(ωt), we see that E is consistently greatest when the peaks are
moving fastest. The greatest values of E are for the intermediate case D = 0.0324. It is important to
note that Figure 4 includes the information about how the PDFs move back and forth within a given
well.
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Figure 4. E(t) as a function of time throughout the period T. All three panels are for ω = 10−4, (a)
D = 0.01, (b) D = 0.0324, (c) D = 0.1, and A = 0.02, 0.04 and 0.08 as indicated by the numbers beside
individual curves.

Figure 5 shows the information length L in Equation (2) per cycle (∆L = L(t + T) − L(t))
associated with the results from Figure 2. We see that L exhibits a beautiful signal of the resonance
phenomenon, just as clear as the probabilities themselves in Figure 2. To interpret these results, we
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start with the thick dashed lines, which are simply 4A/1.4D1/2. To understand the significance of this
formula, we first recall that the peaks move according to (A/2) sin(ωt). The total distance each peak
moves throughout a cycle is therefore 2A. Next, the two PDF peaks at x ≈ ±1 each have standard
deviation σ ≈

√
D/2, with the approximation becoming better for smaller D, where the peaks are

increasingly close to Gaussian (Figure 1). The width of each peak is therefore 2σ = 1.4D1/2. (As we
can also see in Figure 1, the width actually varies slightly throughout the period, but to obtain a lowest
order estimate of what L should be, just the average width is sufficient.) So, if each peak moves a total
distance 2A, and has width 1.4D1/2, then the number of statistically distinguishable states it moves
through is just 2A/1.4D1/2. The final factor of 2 is simply due to the fact that there are two peaks, each
undergoing the same motion. We see therefore that in this small D regime before the resonance sets in,
L is measuring precisely the motion of the peaks, and there is no other source of information length.
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Figure 5. L over one cycle, as functions of the noise level D. The numbers 2 to 6 beside individual
curves correspond to ω = 10−2 to 10−6. (a) A = 0.02, (b) A = 0.04. The thick dashed curves are
L = 4A/1.4D1/2. As in Figure 2, the dotted vertical lines are at Dres given by (9) for ω = 10−2 to 10−6;
note how well these values again agree with the maxima of the corresponding curves.

At the beginning of the resonance there is a sudden increase in L because of the additional
information and associated number of statistically distinguishable states caused by the synchronization
behaviour; at the synchronization, the probability of being in one well or the other at the appropriate
times in the cycle becomes significantly different from 0.5.

Finally, for sufficiently large D, L is decreasing again, in fact, more rapidly than the previous
D−1/2 scaling. This is because in addition to the previous D−1/2 factor, the contribution from the
synchronization also decreases again, since according to Figure 2 the synchronization itself decreases
once the solutions are back to satisfying the adiabatic condition (10).

4. Conclusion

We presented direct numerical solutions of the Fokker-Planck equation governing the classical
double-well model of stochastic resonance. Stochastic resonance was shown to be accompanied by a
rapid change in PDF, generating a new source of information. The latter was beautifully captured by
the information length.
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Appendix A Information Length and Infinitesimal Relative Entropy

We consider two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2) at time t = t1 and t2 and the limit
of a very small δt = t2 − t1 to do Taylor expansion of D[p1, p2] =

∫
dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = −

∫
dx p2

∂t1 p1

p1
, (A1)

∂2

∂t2
1

D[p1, p2] =
∫

dx p2

{
(∂t1 p1)

2

p2
1
−

∂2
t1

p1

p1

}
, (A2)

∂

∂t2
D[p1, p2] =

∫
dx
{

∂t2 p2 + ∂t2 p2
[
ln p2 − ln p1

]}
, (A3)

∂2

∂t2
2

D[p1, p2] =
∫

dx
{

∂2
t2

p2 +
(∂t2 p2)

2

p2
+ ∂2

t2
p2
[
ln p2 − ln p1

]}
. (A4)

In the limit t2 → t1 = t (p2 → p1 = p), Equations (A1)–(A4) give us

lim
t2→t1

∂

∂t1
D[p1, p2] = lim

t2→t1

∂

∂t2
D[p1, p2] =

∫
dx∂t p = 0,

lim
t2→t1

∂2

∂t2
1

D[p1, p2] = lim
t2→t1

∂2

∂t2
2

D[p1, p2] =
∫

dx
(∂t p)2

p
=

1
τ2 . (A5)

Up to O((dt)2) (dt = t2 − t1), Equation (A5) and D(p1, p1) = 0 lead to

D[p1, p2] =
1
2

[∫
dx

(∂t p(x, t))2

p(x, t)

]
(dt)2, (A6)

and thus the infinitesimal distance dl(t1) between t1 and t1 + dt as

dl(t1) =
√

D[p1, p2] =
1√
2

√∫
dx

(∂t1 p(x, t1))2

p(x, t1)
dt. (A7)

By summing dt(ti) for i = 0, 1, 2, ..., n− 1 (where n = t/dt) in the limit dt→ 0, we have

lim
dt→0

n−1

∑
i=0

dl(idt) = lim
dt→0

n−1

∑
i=0

√
D[p(x, idt), p(x, (i + 1)] dt ∝

∫ t

0
dt1

√∫
dx

(∂t1 p(x, t1))2

p(x, t1)
= L(t), (A8)

where L(t) is the information length.
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