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Abstract: 
Stochastic resonance is a subtle, yet powerful phenomenon in which a noise 
plays an interesting role of amplifying a signal instead of attenuating it. 
Popular measures to study stochastic resonance include signal-to-noise ratios, 
residence time distributions, and different information theoretic measures. 
Here, we show that the information length provides a novel method to capture 
stochastic resonance -- the information length measures the total number of 
statistically different states along the path of a system. Specifically, we consider 
the classical double-well model of stochastic resonance, in which a particle in a 
potential V (x, t) = [−x2/2 + x4/4 − A sin(ωt) x] is subject to an additional 
stochastic forcing. We present direct numerical solutions of the Fokker-Planck 
equation for the probability density function p(x, t), for ω = 10−2 to 10−6, and A 
∈ [0,0.2] and show that the information length shows a very clear signal of the 
resonance. That is, stochastic resonance is reflected in the total number of 
different statistical states that a system passes through.

Key words: Stochastic resonance; Fokker-Planck equation; Probability density 
function; Information geometry; Information length
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1. Introduction on information length [1-11]

L(t) = dL
0

t
∫ =

dt1
τ (t1)0

t

∫

τ=characteristic timescale of information change : dL = dt
τ

 1
τ 2 (t)

= dx p(x, t) ∂ ln p(x, t)
∂t

⎛

⎝
⎜

⎞

⎠
⎟

2

=
dL
dt

⎛

⎝
⎜

⎞

⎠
⎟

2

∫

L(t): total number of statistically different states that a 
system undergoes in time (0,t)

(1)

(2)



Relation to infinitesimal relative entropy [10]

Entropy 2018, 20, 0 2 of 11

This paper is structured as follows: Section 2 discusses information length and Section 3
investigates attractor structure. Sections 4 and 5 present the analysis of classical music and quantum
systems, respectively. Conclusions are found in Section 6.

2. Information Length

Intuitively, we define the information length L by computing how quickly information changes
in time and then measuring the clock time based on that time scale. Specifically, the time-scale of
information change t can be computed by the correlation time of a time-dependent PDF, say p(x, t),
as follows.
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From Equation (1), we can see that the dimension of t = t(t) is time and serves as a dynamical
time unit for information change. L(t) is the total information change between time 0 and t:
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In principle, t(t) in Equation (1) can depend on time, so we need the integral for L in Equation (2).
To make an analogy, we can consider an oscillator with a period t = 2 s. Then, within the clock time
10 s, there are five oscillations. When the period t is changing with time, we need an integration of
dt/t over the time interval.

We now recall how t(t) and L(t) in Equations (1) and (2) are related to the relative entropy
(Kullback–Leibler divergence) [15,16]. We consider two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2)
at time t = t1 and t2 and the limit of a very small dt = t2 � t1 to do Taylor expansion of
D[p1, p2] =

R
dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = �

Z
dx p2

∂t1 p1
p1

, (3)

∂

2

∂t2
1

D[p1, p2] =
Z

dx p2

(
(∂t1 p1)2

p2
1

�
∂

2
t1

p1

p1

)
, (4)

∂

∂t2
D[p1, p2] =

Z
dx

⇢
∂t2 p2 + ∂t2 p2

⇥
ln p2 � ln p1

⇤�
, (5)

∂

2

∂t2
2

D[p1, p2] =
Z

dx
⇢

∂

2
t2

p2 +
(∂t2 p2)2

p2
+ ∂

2
t2

p2
⇥
ln p2 � ln p1

⇤�
. (6)

In the limit t2 ! t1 = t (p2 ! p1 = p), Equations (3)–(6) give us
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Up to O((dt)2) (dt = t2 � t1), Equation (7) and D(p1, p1) = 0 lead to

D[p1, p2] =
1
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and thus the infinitesimal distance dl(t1) between t1 and t1 + dt as

dl(t1) =
q

D[p1, p2] =
1p
2

sZ
dx

(∂t1 p(x, t1))2

p(x, t1)
dt. (9)

By summing dt(ti) for i = 0, 1, 2, ..., n � 1 (where n = t/dt) in the limit dt ! 0, we have
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p(x, t1)
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where L(t) is the information length. Thus, L is related to the sum of infinitesimal relative entropy.
It cannot be overemphasised that L is a Lagrangian distance between PDFs at time 0 and t and
sensitively depends on the particular path that a system passed through reaching the final state. In
contrast, the relative entropy D[p(x, 0), p(x, t)] depends only on PDFs at time 0 and t and thus does
not tell us about intermediate states between initial and final states.

3. Attractor Structure

Since L(t) represents the accumulated change in information (due to the change in PDF) at time
t, L(t) settles to a constant value L• when a PDF reaches its final equilibrium PDF. The smaller
L•, the smaller number of states that the initial PDF passes through to reach the final equilibrium.
Therefore, L• provides us with a unique representation of a path-dependent, Lagrangian measure of
the distance between a given initial and final PDF. We will utilise this property to map out the attractor
structure by considering a narrow initial PDF at a different peak position y0 and by measuring L•
against y0. We are particularly interested in how the behaviour of L• against y0 depends on whether a
system has a stable equilibrium point or is chaotic.

3.1. Linear vs. Cubic Forces

We first consider the case where a system has a stable equilibrium point when there is no stochastic
noise and investigate how L• is affected by different deterministic forces [15,16]. We consider the
following Langevin equation [22] for a variable x:

dx
dt

= F(x) + x. (11)

Here, x is a short (delta) correlated stochastic noise with the strength D as

hx(t)x(t0)i = 2Dd(t � t0), (12)

where the angular brackets denote the average over x and hxi = 0. We consider two types of F, which
both have a stable equilibrium point x = 0; the first one is the linear force F = �gx (g > 0 is the
frictional constant) which is the familiar Ornstein–Uhlenbeck (O-U) process, a popular model for a
noisy relaxation system (e.g., [23]). The second is the cubic force F = �µx3 where µ represents the
frictional constant. Note that, in these models, the dimensions of g (s�1) and µ (s�1m�2) are different.

Equivalent to the Langevin equation governed by Equations (11) and (12) is the Fokker–Planck
equation [22]

∂

∂t
p(x, t) =

∂

∂x

⇢
�F(x) + D

∂

∂x

�
p(x, t). (13)

As an initial PDF, we consider a Gaussian PDF

p(x0, 0) =
r

b0
p

e�b0(x0�y0)
2
. (14)
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This paper is structured as follows: Section 2 discusses information length and Section 3
investigates attractor structure. Sections 4 and 5 present the analysis of classical music and quantum
systems, respectively. Conclusions are found in Section 6.

2. Information Length

Intuitively, we define the information length L by computing how quickly information changes
in time and then measuring the clock time based on that time scale. Specifically, the time-scale of
information change t can be computed by the correlation time of a time-dependent PDF, say p(x, t),
as follows.

1
t

2 =
Z

dx
1

p(x, t)


∂p(x, t)

∂t

�2
. (1)

From Equation (1), we can see that the dimension of t = t(t) is time and serves as a dynamical
time unit for information change. L(t) is the total information change between time 0 and t:

L(t) =
Z t

0

dt1
t(t1)

=
Z t

0
dt1

s
Z

dx
1

p(x, t1)


∂p(x, t1)

∂t1

�2
. (2)

In principle, t(t) in Equation (1) can depend on time, so we need the integral for L in Equation (2).
To make an analogy, we can consider an oscillator with a period t = 2 s. Then, within the clock time
10 s, there are five oscillations. When the period t is changing with time, we need an integration of
dt/t over the time interval.

We now recall how t(t) and L(t) in Equations (1) and (2) are related to the relative entropy
(Kullback–Leibler divergence) [15,16]. We consider two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2)
at time t = t1 and t2 and the limit of a very small dt = t2 � t1 to do Taylor expansion of
D[p1, p2] =

R
dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = �

Z
dx p2

∂t1 p1
p1

, (3)

∂

2

∂t2
1

D[p1, p2] =
Z

dx p2

(
(∂t1 p1)2

p2
1

�
∂

2
t1

p1

p1

)
, (4)

∂

∂t2
D[p1, p2] =

Z
dx

⇢
∂t2 p2 + ∂t2 p2

⇥
ln p2 � ln p1

⇤�
, (5)

∂

2

∂t2
2

D[p1, p2] =
Z

dx
⇢

∂

2
t2

p2 +
(∂t2 p2)2

p2
+ ∂

2
t2

p2
⇥
ln p2 � ln p1

⇤�
. (6)

In the limit t2 ! t1 = t (p2 ! p1 = p), Equations (3)–(6) give us

lim
t2!t1

∂

∂t1
D[p1, p2] = lim

t2!t1

∂

∂t2
D[p1, p2] =

Z
dx∂t p = 0,

lim
t2!t1

∂

2

∂t2
1

D[p1, p2] = lim
t2!t1

∂

2

∂t2
2

D[p1, p2] =
Z

dx
(∂t p)2

p
=

1
t

2 . (7)

Up to O((dt)2) (dt = t2 � t1), Equation (7) and D(p1, p1) = 0 lead to

D[p1, p2] =
1
2

Z
dx

(∂t p(x, t))2

p(x, t)

�
(dt)2, (8)
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Merit of information length

• Path-dependent: when a probability density function continuously changes 
with time, the information length measures the total number of different 
statistical states that a system passes through in time [1-11]

• Enables us to quantify the difference in the dynamics between two time 
points

• Preserves a linear geometry of the Ornstein-Uhlenbeck process by a linear 
relation between the information length (in the long time limit) and the mean 
position of an initial Gaussian probability density function unlike relative 
entropy, Jenson divergence, etc (see sciforum-027580 by Heseltine & Kim)

• Captures a sensitive dependence on initial conditions in chaotic systems [1]
• Invariant under time-independent coordinate transformations unlike entropy
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2. Double-well model [11]
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Over-damped stochastic system with a periodic potential V(x,t)

Fokker-Planck equation for probability density function p(x,t)



9

Escape rate for the unperturbed system (A=0)

3. Results
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FIG. 1: The PDFs p(x, t) at four times throughout the cycle, with the numbers n = 0� 3

beside individual curves corresponding to t = nT/4 mod(T ). All three panels are for

! = 10�4 and A = 0.04, and (a) D = 0.01, (b) D = 0.0324, (c) D = 0.1.

FIG. 2:
R1
0 p(x, t) dx as a function of time throughout the period T . All three panels are

for ! = 10�4, (a) D = 0.01, (b) D = 0.0324, (c) D = 0.1, and A = 0.02, 0.04 and 0.08 as

indicated by the numbers beside individual curves. Note also how (a) has a di↵erent

vertical scale, since deviations from 0.5 never exceed O(10�5).

as locally parabolic, which would yield exactly Gaussian behaviour.

Finally, if we compare the amplitudes of p, for D = 0.01 they are all broadly similar,

whereas for D = 0.0324 and 0.1 they are not. Especially for D = 0.0324, the PDFs at

t = T/4 and 3T/4, and even t = 0 and T/2, are significantly di↵erent, with t = T/4 yielding

a far higher peak than t = 3T/4. From these results it is already clear that
R1
0 p(x, t) dx,

that is, the probability of being located in x � 0, can vary considerably throughout the cycle.

This is quantified in Fig. 2, which shows this probability as a function of time throughout

the cycle, for the same solutions as in Fig. 1, as well as A smaller and greater by a factor of

2.

As we can see in Fig. 2, for D = 0.01 the deviation from 0.5 barely exceeds 10�5 even

for A = 0.08. That is, even a relatively large modulation has almost no e↵ect on the

probability of being located in one well versus the other, even at those times in the cycle

when a given well ‘should’ be preferred, in the sense that it is deeper than the other one. In

contrast, for D = 0.0324 and 0.1 even the relatively small modulation A = 0.02 is already

enough to induce clear deviations from 0.5. For D = 0.0324 and A = 0.08 the probability

of being located in x � 0 at t = T/4 even exceeds 0.99. That is, the switching process is

essentially saturated, and perfectly synchronized with the periodic forcing, with virtually

100% probability of being located in x � 0 at t = T/4, and correspondingly in x  0 at

t = 3T/4.

We thus recognize that the most important diagnostic quantity to understand the reso-

nant behaviour is the maximum over the cycle of
R1
0 p(x, t) dx. Fig. 3 shows this quantity,

for ! = 10�2 to 10�6, and D 2 [0.01, 0.1]. The pattern is very clear: if D is too small, this

8
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FIG. 3: The maxima over the cycle of
R1
0 p(x, t) dx, as functions of the noise level D. The

numbers 2 to 6 beside individual curves correspond to ! = 10�2 to 10�6. (a) A = 0.02, (b)

A = 0.04. The thick dashed curves show results from (10). The dotted vertical lines are at

Dres given by (9) for ! = 10�2 to 10�6; note how well these values agree with the maxima

over D of the corresponding curves.

maximum remains essentially 0.5, indicating that there is no preference for one well over

the other at any time in the cycle, and hence no synchronization. For larger D however, the

values suddenly rise and then slowly decrease again. For smaller ! the rise is more abrupt,

and occurs at smaller values of D. For the gradual decrease after the maximum value has

been reached, all frequencies ! converge to the same curve.

To understand these results, we start by equating ! = rK . Solving ! =

exp(�1/4D)/(⇡
p
2) for D yields

Dres =
�1

4 ln(⇡
p
2!)

, (9)

where the subscript ‘res’ indicates that this is the resonant value. In particular, we see in

Fig. 3 that the maxima of the individual ! curves all occur very close to their corresponding

Dres values.

Next, the thick dashed lines in Fig. 3 show the equivalent results for the adiabatic ex-

pression (8). That is, we are interested in the quantity

Z 1

0

exp
⇥
�V (x, T/4)/D

⇤
dx

� Z +1

�1
exp

⇥
�V (x, T/4)/D

⇤
dx. (10)

Analytic expressions for these integrals do not exist, but they can be evaluated numerically

to yield the curves shown in Fig. 3. An asymptotic formula can also be obtained by noting

that the PDFs are concentrated within the wells of V , especially for small D, and at t = T/4

the wells have depths �1/4⌥A. If we approximate the integrals simply by the peak values

of the integrands, the asymptotic formula becomes

exp
⇥
(1/4 + A)/D

⇤

exp
⇥
(1/4 + A)/D

⇤
+ exp

⇥
(1/4� A)/D

⇤ =
1

1 + exp[�2A/D]
, (11)

which di↵ers from the numerically computed value by only a few percent even for D = 0.1,

with even better agreement as D is decreased.

9
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We can then summarize Fig. 3 as follows:

First, if D ⌧ Dres, then ! � rK . The imposed modulation is then too rapid, the system

cannot e↵ectively respond, and the probability of being in either well remains essentially

0.5 throughout the entire cycle. That is, there is no synchronization between the stochastic

switching and the modulation, and hence no resonance. In contrast, if D � Dres, then

! ⌧ rK . The imposed modulation is then so slow that the adiabatic limit (8) does indeed

apply, even to a process as slow as the switching between the wells. And as the results

from (10) or (11) show, the adiabatic formula (8) exhibits synchronization, and in particular

stronger synchronization for smaller D, explaining why D should be as small as possible,

but not much less than Dres, which would switch the resonance o↵.

An immediate consequence of these results is also that a resonant peak occurs only if a

scan is done over the noise level D, as here. If instead D is held fixed and a scan is done

over !, then the ‘resonance’ becomes a simple on-o↵ phenomenon: if ! � rK there is no

synchronization, whereas if ! ⌧ rK there is synchronization, at whatever level (10) yields

for the given D (and A), but no variation with !, since (10) does not involve !.

Fig. 4 quantifies how the resonance saturates as the modulation amplitude A is increased.

That is, for a given !, suppose we first fix D at its resonant value Dres, and then gradually

increase A. How does the maximum value of
R1
0 p(x, t) dx over the cycle increase, and how

large would A therefore have to be to have, say, 90% or 99% probability of being in the

‘correct’ well at the appropriate time in the cycle? Fig. 4a shows the overall variation with

A, whereas Fig. 4b picks out the particular A values where the probability equals 0.9 and

0.99. As we can see in Fig. 4b, the amplitudes required to achieve even 99% probability

decrease as ! decreases. Also shown is the asymptotic formula A = 2.3D, which is seen to

be an excellent fit. This result is readily understood from (11); 1/(1+ exp(�2A/D)) = 0.99

yields A = 2.3D. For su�ciently small !, and corresponding Dres, the stochastic resonance

phenomenon therefore becomes increasingly e�cient, and essentially 100% synchronization

can be achieved even at very small modulation amplitudes, tending to zero as O(D).

IV. INFORMATION LENGTH

Having established what the basic resonance phenomenon looks like in terms of the PDFs

directly, we turn next to the diagnostic quantities E and L from Eqs. (1) and (2). Fig. 5

10
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FIG. 7: The L values corresponding to the results in Fig. 4a, again as functions of the

modulation amplitude A. The numbers beside curves again indicate the range ! = 10�2 to

10�6. For each !, D = Dres. The asterisks on the 3 to 6 curves correspond to the 99%

values in Fig. 4b, indicating the transition in L as a function of A once the resonance is

essentially fully saturated.

V. ESCAPE TIMES

A popular tool to study stochastic resonance is to investigate the escape of particles from

a single well. That is, suppose we solve the same Fokker-Planck equation (7) as before, but

now only on the interval x 2 [0, 3]. The boundary condition at x = 0 is p = 0, meaning

that any particles that reach x = 0 are simply lost to the system. And indeed, the ‘total

probability’ integral,
R
p(x, t) dx, no longer remains constant in this formulation, but instead

decreases in time, corresponding to the continual loss of particles at x = 0. The question

then is, can we analyze and interpret this loss of particles in a similar way to the previous

results, and in particular can we see the signature of resonance here as well?

Starting from some suitable peak within the x ⇡ 1 well, integrating for just a few periods

yields a solution that is again periodic in time, but now also decreases by a constant factor

each period. That is, the solutions are of the form p(x, t+T ) = c p(x, t), where c < 1 is some

factor that depends on the parameters D, ! and A, but is the same for each subsequent

period once this behaviour has emerged. Also, because there is now only one well, the

previous symmetrization procedure does not need to be applied, and this behaviour still

arises after just a few periods.

Note also that this initialization procedure is deliberately chosen to erase all knowledge

of the precise initial condition that was originally used. In contrast, it can also be very

interesting to study escape times for specific initial conditions at particular times in the

cycle, e.g. [49–53], but such results are less directly comparable to the results in Sections 3

and 4, where the initial conditions also do not matter.

Fig. 8 shows this reduction by a constant factor each period, starting from such initialized

solutions (rescaled so that they start out with
R
p dx = 1 again). The top row shows

G(t) =
R1
0 p(x, t) dx, that is, a measure of the number of particles left. The bottom row

shows W (t) = � d
dtG(t), corresponding to the rate at which particles are lost. For all choices

13

Survival probability G(t) and Escape rate W(t)
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FIG. 7: The L values corresponding to the results in Fig. 4a, again as functions of the

modulation amplitude A. The numbers beside curves again indicate the range ! = 10�2 to

10�6. For each !, D = Dres. The asterisks on the 3 to 6 curves correspond to the 99%
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vestigate the escape of particles from a single well. That is, suppose we solve the same

Fokker-Planck equation (7) as before, but now only on the interval x 2 [0, 3]. The boundary

condition at x = 0 is p = 0, meaning that any particles that reach x = 0 are simply lost

to the system. And indeed, the ‘total probability’ integral,
R
p(x, t) dx, no longer remains

constant in this formulation, but instead decreases in time, corresponding to the continual

loss of particles at x = 0. The question then is, can we analyze and interpret this loss of

particles in a similar way to the previous results, and in particular can we see the signature

of resonance here as well?

Starting from some suitable peak within the x ⇡ 1 well, integrating for just a few periods

yields a solution that is again periodic in time, but now also decreases by a constant factor

each period. That is, the solutions are of the form p(x, t+T ) = c p(x, t), where c < 1 is some

factor that depends on the parameters D, ! and A, but is the same for each subsequent

period once this behaviour has emerged. Also, because there is now only one well, the

previous symmetrization procedure does not need to be applied, and this behaviour still

arises after just a few periods.

Note also that this initialization procedure is deliberately chosen to erase all knowledge

of the precise initial condition that was originally used. In contrast, it can also be very

interesting to study escape times for specific initial conditions at particular times in the

cycle, e.g. [49–53], but such results are less directly comparable to the results in Sections 3

and 4, where the initial conditions also do not matter.

Fig. 8 shows this reduction by a constant factor each period, starting from such initialized

solutions (rescaled so that they start out with
R
p dx = 1 again). The top row shows

G(t) =
R1
0 p(x, t) dx, that is, a measure of the number of particles left. The bottom row
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FIG. 8: The top row shows G(t) =
R1
0 p(x, t) dx, and the bottom row the corresponding

W (t) = � d
dtG(t). All three solutions are for ! = 10�4, (a) D = 0.023, (b) D = 0.025, (c)

D = 0.027, and A = 0.02, 0.04 and 0.08 as indicated by the numbers beside individual

curves.

FIG. 9: The reduction factors R1 and R2 in Eq. (12), as functions of the noise level D, and

! = 10�2, 10�4 and 10�6 as labelled. Within each set of six curves the innermost, dotted

ones are for A = 0.02, the dashed curves are for A = 0.04, and the outermost, solid ones

are for A = 0.08. The vertical dash-dotted lines are at D = 0.0203, 0.0324, and 0.0803,

namely Dres for the given ! values.

shows W (t) = � d
dtG(t), corresponding to the rate at which particles are lost. For all choices

of D and A, the pattern is as asserted above, with both G and W decreasing by the same

factor c in each successive period. We see furthermore that increasing either D or A yields

a smaller c; that is, the particles are lost more quickly. This is hardly surprising; greater

noise or greater periodic modulation should indeed both promote faster loss of particles.

The other interesting feature to note in Fig. 8 is that the losses W (t) occur in bursts,

strongly concentrated in the times between t = T/2 and T , mod(T ), with far less lost in the

other half of the cycle. This is again as expected; depending on whether the well is shallower

or deeper, particles are more or less likely to be lost. To quantify this e↵ect, it is convenient

to split the overall reduction factor into two separate factors as c = R1 R2, with R1,2 defined

by

R1 ⌘
G(T/2)

G(0)
, R2 ⌘

G(T )

G(T/2)
, (12)

with all times mod(T ). The bursting behaviour then means that R2 < R1, and ideally we

would like R1 to remain as close to 1 as possible, while simultaneously having R2 ⌧ 1. This

would be the closest equivalent to the previous synchronization in Fig. 3, since it would

mean that almost nothing is lost during the favourable part of the cycle, but then almost

everything is lost during the unfavourable part.

Fig. 9 shows how the reduction factors R1 and R2 vary with D, ! and A. We see again

the previous result that increasing D increases the losses, that is, yields smaller R1 and R2.

Increasing A decreases R2, but increases R1. That is, it increases the contrast between the

14
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FIG. 4: (a) The maximum over the cycle of
R1
0 p(x, t) dx as a function of the modulation

amplitude A. The numbers 2 and 6 indicate the range ! = 10�2 to 10�6. For each !,

D = Dres. (b) The critical values of A required for the maxima in (a) to equal 0.9 for the

lower curve, and 0.99 for the upper curve, corresponding to 90% and 99% probabilities of

being in the ‘correct’ well. The asterisks correspond to A = 2.3D, with D = Dres again

given by (9).

FIG. 5: E(t) as a function of time throughout the period T . All three panels are for

! = 10�4, (a) D = 0.01, (b) D = 0.0324, (c) D = 0.1, and A = 0.02, 0.04 and 0.08 as

indicated by the numbers beside individual curves.

shows E for the previous solutions from Figs. 1 and 2. Recalling that the position of the

peaks varies as (A/2) sin(!t), we see that E is consistently greatest when the peaks are

moving fastest. The greatest values of E are for the intermediate case D = 0.0324, in

agreement with Fig. 2b for example. On the other hand, unlike Figs. 2a and 2c, which had

very di↵erent magnitudes, here the values in Figs. 5a and 5c are quite similar. It is clear

therefore that Fig. 5 is measuring something di↵erent from Fig. 2. In particular, whereas

Fig. 2 only encapsulates the probability to be in one well or the other, Fig. 5 also includes

the information about how the PDFs move back and forth within a given well.

Fig. 6 shows the information length L per cycle associated with the results from Fig.

3. We see that L exhibits a beautiful signal of the resonance phenomenon, just as clear

as the probabilities themselves. To interpret these results, we start with the thick dashed

lines, which are simply 4A/1.4D1/2. To understand the significance of this formula, we first

recall that the peaks move according to (A/2) sin(!t). The total distance each peak moves

throughout a cycle is therefore 2A. Next, the two PDF peaks at x ⇡ ±1 each have standard

deviation � ⇡
p

D/2, with the approximation becoming better for smaller D, where the

peaks are increasingly close to Gaussian (Fig. 1). The width of each peak is therefore

2� = 1.4D1/2. (As we can also see in Fig. 1, the width actually varies slightly throughout

the period, but to obtain a lowest order estimate of what L should be, just the average

width is su�cient.) So, if each peak moves a total distance 2A, and has width 1.4D1/2, then

the number of statistically distinguishable states it moves through is just 2A/1.4D1/2. The
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Information length L(t) - continued
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FIG. 6: L over one cycle, as functions of the noise level D. The numbers 2 to 6 beside

individual curves correspond to ! = 10�2 to 10�6. (a) A = 0.02, (b) A = 0.04. The thick

dashed curves are L = 4A/1.4D1/2. As in Fig. 3, the dotted vertical lines are at Dres given

by (9) for ! = 10�2 to 10�6; note how well these values again agree with the maxima of the

corresponding curves.

final factor of 2 is simply due to the fact that there are two peaks, each undergoing the

same motion. We see therefore that in this small D regime before the resonance sets in, L

is measuring precisely the motion of the peaks, and there is no other source of information

length.

The sudden increase in L as the resonance sets in is then measuring the additional in-

formation, and associated number of statistically distinguishable states, that comes from

the synchronization behaviour, as the probability of being in one well or the other at the

appropriate times in the cycle becomes significantly di↵erent from 0.5. Finally, for D su�-

ciently large that L is decreasing again, it decreases more rapidly than the previous D�1/2

scaling. The reason for this is that in addition to the previous D�1/2 factor (which we recall

comes from the broadening of the peaks, and thus continues to apply), the contribution from

the synchronization also decreases again, since according to Fig. 3 the synchronization itself

decreases once the solutions are firmly on the adiabatic curve (10).

Fig. 7 shows the information length associated with the saturation results in Fig. 4a.

Unlike the probabilities, which are necessarily bounded to remain below 100%, L can and

does continue to increase even after the probabilities have saturated. We see though that

the slope of the L versus A curves decreases significantly, right around the point where

the probabilities reach 99%. This again illustrates the intuitive interpretation of L as a

measure of the information changes in the PDF. Before the probabilities have saturated, L

is increasing both due to the increasing (A/2) sin(!t) motion of the peaks, and due to the

increasing degree of synchronization, whereas after the synchronization is complete it is only

the peaks’ motion that can continue to increase, and hence cause L to increase.

12
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4. Conclusions

• Investigated a stochastic resonance by direct numerical solutions of 
the Fokker-Planck equation.

• Stochastic resonance was shown to be accompanied by a rapid change 
in PDF, generating a new source of information, which is beautifully 
captured by the information length.

• Information length is a useful diagnostic tool, with a very clear 
signature of the resonance emerging.

• In contrast, relative entropy, Kullback-Leibler divergence, etc would 
not be useful for these problems as they compare only the two 
probability density functions (e.g. at the two different times).
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