
ECEA

2019 18–30 November 2019

5th International Electronic Conference 
on Entropy and Its Applications

Conference Proceedings Paper

A New Perspective on the Kauzmann Entropy
Paradox: A Four-Dimensional Crystal/Glass Quantum
Critical Point

Caroline S. Gorham and David E. Laughlin

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
caroling@cmu.edu; laughlin@cmu.edu

Abstract: In this article, a new perspective on the Kauzmann point is presented. We model the
solidifying liquid by a quaternion orientational order parameter and find that the Kauzmann point
is analogous to a quantum critical point. The “ideal glass transition" that occurs at the Kauzmann
temperature is the point at which the configurational entropy of an undercooled metastable liquid
equals that of its crystalline counterpart. We identify this point as a first order quantum critical
point. We suggest that this quantum critical point belongs to quaternion ordered systems that exist
in four- and three-dimensions. This “Kauzmann quantum critical point” can be considered to be a
higher-dimensional analogue to the superfluid-to-Mott insulator quantum phase transition which
occurs in two- and one-dimensional complex ordered systems. Such quantum critical points are
driven by tuning a non-thermal frustration parameter, and result due to characteristic softening
of a ‘Higgs’ type mode that corresponds to amplitude fluctuations of the order parameter. The
first-order nature of the finite temperature Kauzmann quantum critical point is seen as a consequence
of the discrete change of the topology of the ground state manifold that applies to crystalline and
non-crystalline solid states.

1. Introduction

The nature of the glass transition is widely thought to be one of the most challenging problems in
condensed matter physics [1–4]. Despite their ubiquity, a fundamental understanding of amorphous
solids and the glass transition has yet to be obtained. This is in stark contrast to our knowledge
of crystalline solids, which result by first-order phase transitions and in which phonons (collective
Nambu-Goldstone modes) develop to transport thermal energy. Unlike crystallization, glass formation
is non-equilibrium and the glass transition results as an undercooled liquid breaks ergodicity to become
a rigid solid.

The glass transition is highly dependent on the cooling rate; with a slower cooling rate, an
undercooled liquid may remain ergodic to lower temperatures. As the temperature of an undercooled
liquid is decreased, the difference in entropy between the liquid and crystalline solid phase decreases.
Because the entropy of undercooled fluids declines faster with temperature than does crystal entropy,
this results in an entropy paradox at a certain finite temperature (Kauzmann temperature TK) that
may be achieved in the limit of an infinitely slow cooling rate [5–7]. An “ideal glass," that forms at the
Kauzmann temperature, has a configurational entropy that matches its crystalline counterpart. This is
known in the literature as the Kauzmann entropy paradox [5–7]. “Ideal glass transitions" have never
been obtained in the laboratory, as any real glass transition occurs at a temperature higher than TK
and is caused by kinetic constraints that are responsible for a loss of ergodicity [8]. Yet, the physics
underlying the Kauzmann entropy paradox presents an interesting problem in condensed matter
physics.
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The objective of this article is to describe the nature of formation of crystalline solids from the
liquid state, and the origin of the Kauzmann entropy paradox, by the application of a quaternion
orientational order parameter. This approach makes use of the principles of spontaneous symmetry
breaking and of topological-ordering, that are known to play key roles in our understanding of
condensed matter. Analogies between solidification and the formation of complex ordered states
of matter, in two- and one-dimensions, are developed in order to frame the Kauzmann point as a
quantum critical point (QCP) that exists to separate crystalline and glassy solid states.

The topological properties of the free energy functions that apply to crystalline and glassy solids
are compared, and the roles of the two types of fundamental exciations: massless phase modes
(Nambu-Goldstone) and a massive amplitude mode (‘Higgs’) are discussed. These considerations
enable the characterization of the “ideal glass transition," at the finite Kauzmann temperature, as a
first-order QCP similar to the second-order superfluid/Mott-insulator quantum phase transition (QPT)
that occurs in two- and one-dimensions [9].

2. Crystalline-to-Glass First-Order Quantum Critical Point and the Kauzmann Entropy Paradox

Quantum phase transitions [10] exist for O(N) quantum rotor models of N−vector ordered
systems, that exist in N or N − 1 dimensions, which are constructed by taking into account both
potential and kinetic energy terms. Such QPTs [10] are driven by tuning a dimensionless frustration
parameter (g), that is a measure of the ratio of kinetic energy to potential energy. O(2) quantum rotor
models have been applied extensively to understand the nature of the superfluid/Mott-insulator QPT
in two- and one-dimensions [9].

In complex ordered systems, an order parameter with N = 2 components develops. In two- and
one-dimensions, such complex ordered systems are described using O(2) quantum rotor models that
give the dynamics of the complex order parameter (Ψ = |Ψ|eîθ) near a QPT between phase-coherent
superfluid (|Ψ| > 0) and phase-incoherent Mott-insulator (|Ψ| = 0) states. In superfluids, the free
energy function has the form of a conventional ‘Mexican hat’ (Figure 1A) where the order parameter
has a non-zero value at its basin. In complex ordered systems that exist in 2D/1D, as opposed to 3D,
phase-coherent superfluid ground states are achieved via a Kosterlitz-Thouless topological-ordering
transition in which vortex defects and anti-defects form bound states (Figure 2). In the classical limit,
i.e., in absence of kinetic energy effects (frustration), the scalar phase angle θ acquires a definite value
below the Kosterlitz-Thouless transition through breaking of rotational symmetry – and the superfluid
ground state is perfectly phase-coherent.

Around the symmetry-broken ground state, there are two mode types: a massless
Nambu-Goldstone mode related to fluctuations in the scalar phase angle θ and a massive ‘Higgs’
mode related to amplitude variations in Ψ. As the amount of frustration reaches a critical value, in the
vicinity of the QPT to the phase-incoherent Mott-insulator, there is a characteristic softening of the
excitation gap or mass of the Higgs amplitude mode [9]. This softening transforms the free energy into
a function with a minimum at |Ψ| = 0 in the phase-incoherent Mott-insulating state [9] (Figure 1B).

The order of the quantum phase transition, that belongs to an O(N) quantum rotor model, in
N or N − 1 dimensions, can be discerned by noting changes in the topological properties of the free
energy function in its vicinity. In the case of the superfluid/Mott-insulator QPT, the topology of the
‘Mexican hat’ that applies to the superfluid is circular and the free energy of the Mott-insulator retains
U(1) ∼= S1 symmetry at the origin. Thus, the superfluid/Mott-insulator QPT is continuous and is
therefore of second-order. Such a second-order QPT occurs at zero Kelvin (Figure 3A), and describes a
change in the ground state as a result of quantum fluctuations arising from the Heisenberg uncertainty
principle [10].
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Figure 1. (A) The ‘Mexican hat’ free energy function of complex ordered systems whose complex order
parameter has the form Ψ = |Ψ|eîθ . In the phase-coherent superfluid phase, |Ψ| > 0 and a massless
Nambu-Goldstone and a massive Higgs modes arise. (B) On approaching the two-dimensional
superfluid/Mott insulator QPT, at a critical value of frustration [9] (gC), the free energy function
transforms to one with a minimum at |Ψ| = 0. [Reproduced from Ref. [9]]

         (TBEC > T > TKT)                   ( T < TKT )             T = 0 K
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Figure 2. Classical 2D/1D O(2) rotor model. (A) An abundance of misorientational fluctuations
develops below the bulk Bose-Einstein condensation temperature (TBEC), and may be discretized
as a plasma of isolated point defects and anti-defects. (B) As the temperature is lowered below the
Kosterlitz-Thouless transition temperature (TKT), complementary defects/anti-defects begin to form
bound pairs. (C) As the temperature approaches 0 K, defects and anti-defects that comprise bound
states come together and annihilate. In the absence of frustration, no signed defects persist to the
ground state that is perfectly phase-coherent.

In the same way that the degree of order in superfluids (phase-coherent) is described by a complex
order parameter, it has recently been proposed by the authors that orientational-order in crystalline
solids may be described by a quaternion order parameter [11,12]. The quaternion orientational order
parameter that is adopted has the form: Ψ = |Ψ|en̂θ where θ ∈ [0, π] is a rotation angle and n̂ is a
unit-length vector quaternion (n̂2 = −1) that acts as the axis of rotation. This orientational order
parameter depends upon three scalar phase angle parameters (θ, θ1 ∈ [0, π] and θ2 ∈ [0, 2π]) and a
single amplitude degree of freedom (|ψ|).

In four- and three-dimensions, O(4) quantum rotor models apply to mathematically model
quaternion ordered systems – as these may be considered to be “restricted dimensions” for quaternions
in the Hohenberg-Mermin-Wagner sense [13–15]. When applied to the solidification problem, the
quantum critical point that belongs to the O(4) quantum rotor model is anticipated to separate
crystalline (i.e., orientationally-ordered) and non-crystalline (i.e., orientationally-disordered) solids.
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Figure 3. (A) Complex ordered systems (N = 2) that exist in 2D/1D are mathematically described using
O(2) quantum rotor models, that admit a second-order QPT at absolute zero temperature [26]. This
is the superfluid/Mott-insulator QPT [9]. (B) Solidification processes in four- and three-dimensions,
as characterized by a quaternion orientational order parameter (N = 4), are described using O(4)
quantum rotor models. Such O(4) quantum rotor models admit a QCP that is first-order. This may be
identified with the “ideal glass transition,” that occurs at a finite Kauzmann [5] temperature.

Crystalline solids are anticipated to develop as a result of a defect-driven topological-ordering
transition [12,16], just as the Kosterlitz-Thouless mechanism [17,18] allows for the realization of
superfluids in 2D/1D. Just as first homotopy group defects are available to complex ordered
systems (i.e., π1(S1) vortices), third homotopy group defects are available to quaternion ordered
systems (π3(S3)). Vortices are points in two-dimensions (complex plane) and third homotopy
group defects are points in four-dimensions (quaternion plane). In these “restricted dimensions"
(Hohenberg-Mermin-Wagner theorem [13–15]), defect binding via a Kosterlitz-Thouless mechanism
is necessary to prevent the mobility of misorientational fluctuations such that phase-coherency or
long-range orientational-order may be obtained.

In addition to third homotopy group defects, closed-loop (fundamental group) defects [19–21]
exist below the melting temperature as a consequence of the discrete orientational-order in clustered
undercooled fluids. Such defects are known as disclinations. Just as complementary third homotopy
group point defects form bound pairs on crystallization, disclinations of equal and opposite sign
come together to form dislocations [22–25]. In perfect crystals, at absolute zero temperature, definite
values for the set of three scalar phase angle parameters that define the quaternion order parameter
are obtained as components of bound pair excitations come together and annihilate.

In the presence of finite frustration effects, on approaching the quantum critical point from
the limit of a perfect crystal, crystalline solid states may form in which local orientational-order is
incompatible with long-range crystallographic packing. Examples of such structures are topologically
close-packed Frank-Kasper crystalline solids [27,28], in which geometric frustration [29,30] prevents the
development of long-range icosahedral orientational-order. Such geometrically frustrated crystalline
structures (e.g., Frank-Kasper) are stabilized in the ground state by a periodic arrangement of signed
topological defects. In particular, the frustration-induced signed disclination lines that are present
carry negative curvature and form what is known as a “major skeleton network” (Figure 4). An
entangled array of negative disclination lines is an attractive model for the structure of glasses [21,29],
that form above a critical amount of geometrical frustration. Just as topologically close-packed
crystalline solids may be viewed as analogous to 2D/1D superfluids with a finite amount of frustration,
orientationally-disordered glasses are similar to the phase-incoherent Mott-insulator state [9].
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“Major Skeleton Network”

Figure 4. In geometrically-frustrated crystalline structures, i.e., topologically close-packed,
frustration-induced topological defects form a periodic arrangement. The ordered arrangement of
negative wedge disclinations [27,28] is known as the “major skeleton network." Signed third homotopy
group defects also form a periodic arrangement, in geometrically-frustrated crystalline solids, but are
not visible because of their nature as points in four-dimensions. [Reproduced from Ref. [31]]

In crystalline solids, the order parameter manifold has the topology of a three-dimensional torus
(T3 ∼= S1 × S1 × S1) that accommodates periodic boundary conditions. This can be viewed as a
higher-dimensional, quaternionic, version of the ‘Mexican hat’ of superfluids (Figure 1A). Around the
symmetry-broken crystalline ground state: three massless phonon modes (Nambu-Goldstone) and a
massive mode (‘Higgs’), related to the amplitude variations in Ψ, exist.

Like the 2D/1D superfluid/Mott-insulator QPT [9], softening of the excitation gap of the
amplitude mode is anticipated as frustration is increased to approach the QCP that belongs to O(4)
quantum rotor models in 4D/3D. This softening transforms the order parameter manifold into a
function with a minimum at |Ψ| = 0, at the QCP, which retains SU(2)/H′ symmetry at the origin
(where H′ is the binary polyhedral group of preferred local orientational order H ∈ SO(3), and
SU(2) ∼= S3).

Owing to the discontinuous change in the genus topological invariant of the ground state manifold
that applies to crystalline and glassy solids, the frustration-induced QCP is first-order and thereby
occurs at a finite temperature (Figure 3B). When considering solidification processes, this first-order
QCP may be identified as the Kauzmann point [5] that occurs at the finite Kauzmann temperature (
“ideal glass transition”). The Kauzmann entropy paradox that occurs at the Kauzmann QCP, where the
configurational entropy of an undercooled liquid and its crystalline counterpart are equal, is physically
acceptable at finite temperatures but would not be so at the absolute zero of temperature. Although the
finite temperature nature of the “ideal glass transition” is well-understood based upon thermodynamic
principles, this topological interpretation of its first-order nature is novel.

3. Conclusions and Outlook

The abundance of literature that exists on the nature of both the real and the “ideal glass transition"
clearly reflects the importance of the free energy landscape in providing a qualitative explanation
of the phenomenon. In this article, we have suggested that crystallization and glass formation can
be understood within a unified framework by the application of a four-dimensional quaternion
orientational order parameter. As a generalization of the superfluid/Mott-insulator quantum phase
transition (QPT) in two- or one-dimensions, a quantum critical point (QCP) is anticipated for quaternion
ordered systems that exist in four- or three-dimensions. This QCP has been identified with the “ideal
glass transition,” that occurs at the finite Kauzmann temperature.

The first-order nature of the Kauzmann QCP, at which the Kauzmann entropy paradox may
be realized, has been determined by accounting for the discrete change in the topology of the
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ground state manifold that applies to crystalline (orientationally-ordered) and non-crystalline
(orientationally-disordered) solid states. Just as in the case of the superfluid/Mott-insulator QPT,
the ground state manifold is anticipated to become modified due to characteristic softening of the
amplitude mode (‘Higgs’) on approaching the Kauzmann QCP from the limit of a perfect crystal.
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