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Abstract: We analyze existing models for material transport in non-isothermal non-electrolyte 

liquid mixtures that utilize non-equilibrium thermodynamics. Many different sets of equations for 

material have been derived that, while based on the same fundamental expression of entropy 

production, utilize different terms of the temperature- and concentration-induced gradients in the 

chemical potential to express the material flux. We reason that only by establishing a system of 

transport equations that satisfies the following three requirements can we obtain a valid 

thermodynamic model of thermodiffusion based on entropy production and understand the 

underlying physical mechanism: (1) maintenance of mechanical equilibrium in a closed steady-state 

system, expressed by a form of the Gibbs-Duhem equation that accounts for all the relevant 

gradients in concentration, temperature, and pressure and respective thermodynamic forces; (2) 

thermodiffusion (thermophoresis) is zero in pure unbounded liquids (i.e., in the absence of wall 

effects); (3) invariance in the derived concentrations of components in a mixture, regardless of which 

concentration or material flux is considered to be the dependent versus independent variable in an 

overdetermined system of material transport equations. The analysis shows that thermodiffusion in 

liquids is based on the entropic mechanism. 

 

1. Introduction 

The aim of this work is to discuss a variety of proposed non-equilibrium thermodynamic 

material transport equations for non-isothermal non-electrolyte liquid mixtures, in order to select a 

self-consistent and physically reasonable approach that adequately describes the empirical data. 

The fundamentals of non-equilibrium thermodynamics are well-established and widely used to 

model relatively slow transport processes in liquids and dense gases [1–7]. Results based on non-

equilibrium thermodynamics generally agree with those that utilize the Boltzmann kinetic equation 

for small deviations from equilibrium [2], confirming the validity of this semi-empirical approach.  

The advantage of employing non-equilibrium thermodynamics for theoreticians is the ability to 

combine equilibrium physical parameters such as chemical potential with kinetic coefficients derived 

from kinetic and hydrodynamic theory. Experimentalists can then use thermodynamic parameters 

from the literature and principles of non-equilibrium thermodynamics to explain empirical data on 

mass- and thermodiffusion.  

Approaches based on non-equilibrium thermodynamics can be applied to a broad range of 

materials. Our work here is restricted to the study of non-electrolyte binary molecular solutions and 

colloidal suspensions placed in a temperature gradient. In our study of these seemingly simple 

systems over the past couple of decades we have been surprised at the pronounced contrast in the 

results obtained by different researchers. Although non-equilibrium thermodynamics assumes only 

that the system is close to thermodynamic equilibrium with maximal entropy, there are numerous 
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interpretations of the fundamental principles used to derive the material transport equations and 

associated physical parameters. In this work we review the various approaches and define the issues 

and inconsistencies from our perspective, in an effort to gain insight into the current state of the 

problem. We then present and explain a set of basic principles that we believe can be used to select a 

unique but consistent system of material transport equations and discuss the compatibility of existing 

theories with these principles.  

These principles formulated above could be accepted as the trivial repetition of the well-known 

concepts, unless there is the controversy in the interpretation of these basic criteria in monographs, 

research articles and reviews.  

2. Equilibrium Thermodynamics and the Condition of Mechanical Equilibrim 

2.1. The Gibbs Equation 

The use of non-equilibrium thermodynamics starts with the Gibbs equation, which is applicable 

to a small unit of volume within a macroscopic system of molecules and particles: 

k k
k

Tds du dn   (1) 

Here T is the local temperature, s  is the local entropy, u  is the internal energy of a small 

unit volume, and k  and kn  are the chemical potential and numeric volume concentration of 

components in a mixture, respectively. Note that Equation (1) holds for both constant and changing 

pressure p, since it is written for a unit volume [1], i.e., the term pdv  corresponding to the change 

in entropy during a change in system volume is always zero. The Gibbs equation is used to derive 

the entropy production in the non-equilibrium systems.  

In [2], an equation from [3] similar to Equation (1) is used to define a system with changing 

volume. In [4] an equation analogous to Equation (1) is written for a volume containing unit mass of 

a binary mixture (i.e., the specific volume), which utilizes the equality 
* *
1 1 2 2 1n m n m  . In the latter 

case, the Gibbs equation can be written in the form 

* * *du T ds pdv dc    (2) 

where *v  is the specific volume, and 

1 2

1 2m m

 
    (3) 

*
1 1c n m  (4) 

Here, 
*
1n  and 

*
2n  are the numbers of particles or molecules per unit mass, while 1m  and 

2m  are the respective masses. Here and below, values with an asterisk are normalized to unit mass, 

while thermodynamic terms without an asterisk are parameters per unit volume.  

The approach used in [4] is restricted to the relative transport of two components, i.e., the kinetic 

properties of the individual components are not considered. Consequently, predications based on the 

approach are inconsistent with the growing body of empirical data on individual diffusion 

coefficients and component mobilities. In order to accurately predict absolute (versus relative) values 

for mobilities, equilibrium thermodynamic behavior must be described separately using individual 

chemical potentials of components before being inserted into kinetic formulations. Next, we outline 

the use of Equation (1) in non-equilibrium thermodynamics to calculate entropy production and the 

associated flux of mass. 
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2.2. Mechanical Equilibrium and the Gibbs-Duhem Equation 

In local thermodynamic equilibrium, Equation (1) should be supplemented by the Gibbs-Duhem 

equation, which expresses mechanical equilibrium in the system [1–3]: 

,

0k k k
k i

i k i

n dp dT dn
p T n

     
   

   
  (5) 

The partial derivative 
k

p




 in Equation (5) can be related to molecular (or particle) partial 

volume k
kv

p


 


. In liquids, which can be considered incompressible in most situations, the 

molecular partial volume can be considered as the volume occupied by one molecule in a space filling 

solution. In this case, we can use the equality 

1k k
k

n v   (6) 

and the general form of the Gibbs-Duhem equation can be accurately expressed as 

,

k k
k i

i k i

n T n p
T n

   
     

  
  (7) 

According to Equations (5)–(7) the pressure gradient can be cancelled by temperature- and 

pressure-induced gradients in the chemical potentials established in the system by either internal or 

external factors, thus providing for mechanical (hydrodynamic) equilibrium. This is in contrast to the 

approaches used in [1–7], which assume the pressure gradient is non-zero only when there is an 

external force acting on the system. By contrast, we argue that a force field responsible for establishing 

the pressure gradient does not necessarily have to be applied from outside the system; rather, it can 

be established within the system under factors such as a temperature or concentration gradient, 

which is caused by the input or output of energy or mass. One well-known example of such an 

“internal” field is the electric field established in electrolyte solutions that are either non-

homogeneous or non-isothermal [1,2]. An example of the establishment of a pressure gradient from 

a temperature or concentration gradient can be obtained from the well-known expression for osmotic 

pressure in diluted solution [1] 

n

k
k

p kT n   (8) 

where k is the Boltzmann constant, leading to an osmotic pressure gradient defined by 

n n

k k
k k

p kT n k T n       (9) 

For the isothermal systems, Equation (9) yields the expression derived by Einstein in the work 

[8] where the Brownian motion was proved to be the non-equilibrium thermodynamic effect caused 

by the internal pressure gradient in the system. In [8] it is shown also that the concentration-induced 

pressure gradient can be established in the absence of the external forces. Other examples of 

internally-derived pressure gradients include radiation and chemical reactions. Likewise, internal 

pressure gradients can also be caused by the input or output of heat, as in a non-equilibrium system 

that experiences continuous non-uniform heating. Thus, the assumption of constant pressure in non-

isothermal mixtures cannot be accepted axiomatically; pressure and concentration gradients can be 

established in mechanically stable steady-state systems through the action of internal factors, without 
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the application of an external force field. We note, however, that in non-steady state systems the 

pressure gradient cannot be adequately defined by the Gibbs-Duhem equation because such systems 

are not, strictly speaking, mechanically stable since the molecules or particles are moving in a directed 

fashion.  

A more robust approach is to calculate the pressure gradient from an additional condition placed 

on the system, as is done in [9,10]. Since the Gibbs-Duhem equation is valid for describing mechanical 

equilibrium within a local thermodynamic equilibrium, it should also be valid for a closed steady-

state system. The equation that expresses the condition of mechanical equilibrium should include all 

the relevant thermodynamic variables: temperature, pressure and the component concentrations. If 

any of these variables are omitted, the Gibbs-Duhem equation will not correctly define the condition 

of mechanical equilibrium, a truth that is disregarded in many works. For example, in [1–3,5–7] 

Equation (2) is written in the form 

,
,

0k p T k
i k

n d    (10) 

where the dependence of chemical potential on temperature is omitted and the pressure gradient is 

assumed to be zero. Consequently, the condition of mechanical stability is ignored. Non-isothermal 

systems described by Equation (10) make allowance for hydrodynamic flows or other collective 

movements.  

In [4] the Gibbs-Duhem equation is not utilized but the pressure in a non-isothermal system is 

still assumed to be constant, as in [1–3], because it is argued that there is no external driving force. 

We repeat, however, that the general Gibbs-Duhem equation [Equation (7)] allows for a pressure 

gradient to be established when there are concentration- or temperature-induced gradients in the 

chemical potentials.  

In an ingenious application of the Gibbs-Duhem Equation (9) a two-chamber model is 

considered, with particles exchanged between two isothermal chambers maintained at different 

temperatures and pressures. Separate Gibbs-Duhem equations for isothermal and isobaric systems 

are written for each chamber. In this system, the reversible work in particle exchange is calculated 

through the difference in the relevant chemical potentials between the two chambers, with the 

changes in entropy assumed to be zero. The thermodiffusion parameters are expressed through the 

difference in the excess pressure between chambers using Equations (6) and (7), where the entropic 

term k T
T





 is omitted. Using the respective “isoentropic” Gibbs-Duhem equation, the excess 

pressure difference between the chambers   can be calculated as the difference in the binary 

chemical potential 
2

2 1

1

v

v
   between chambers 

2
2 1 1

1

v
v

v
 
 

    
 

 (11) 

and the mass- and thermodiffusion parameters are expressed through concentration- and 

temperature-induced excess pressure gradients.  

In a space filling model of liquid mixtures, the combination of chemical potentials relevant to 

various thermodynamic theories of mass- and thermodiffusion may be defined as 

2
2 1

1

v

v
     (12) 

regardless of the validity of Equation (11). The temperature-induced change in excess pressure 

expressed by Equation (11) is defined in [10] as the driving force of thermodiffusion. However, this 
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works for thermodiffusion only if the entropy is unchanged (see the term k

k

T
T





  in Equation 

(7) above and Equation (56) in [10] that expresses mechanical equilibrium, where the analogous 

partial entropic term, while written expressly, is subsequently ignored in defining non-isothermal 

material transport). This assumption of constant entropy is a significant flaw, since particles that 

move from the cold to hot chamber must become warmer, just as particles moving in the opposite 

direction become colder.  

According to the Clausius inequality [1], the respective minimal change in entropy can be 

defined as 

2 2 1 1V VN c N c
S T

T

  
    (13) 

where 
1N  and 

2N  are the numbers of the respective particles exchanged between chambers and 

1Vc  and 
2Vc  are the corresponding thermal capacities. The entropy can remain unchanged in such a 

particle exchange only under very exotic conditions. Thus, while this approach works well for 

isothermal mass diffusion [11] where the entropic term k T
T





 is absent, it can lead to serious 

mistakes in thermodiffusion, where entropy is changing. The critical difference is that the chemical 

potential and its temperature derivative are functions of particle mass, even if the pressure is not. 

Specifically, in statistical mechanics the chemical potential is proportional to the derivative of the 

partition function with respect to the corresponding particle number and includes mass dependence 

in the term related to the kinetic energy of thermal motion. By contrast, the pressure is proportional 

to the derivative with respect to the volume of the system and has no mass dependence.  

The use of an excess pressure gradient as the driving force in thermodiffusion based on the 

principles formulated in [9,10] resulted in the conclusion that only quantum effects lead to differences 

in isotope thermodiffusion behavior [12], although the contribution of quantum effects is several 

orders of magnitude smaller than those arising from classical terms used in the theory of isotope 

effects, both in isothermal and non-isothermal systems [13,14]. In [9] the absence of any isotope effect 

in liquids is related to rapid dissipation of energy in liquids. We note again that Equation (12) in [9], 

which relates the transport parameter to component chemical potentials, is a simple consequence of 

Equations. (6) and (7) and does not require an assumption of isoentropy. 

In [7] a set of two Gibbs-Duhem equations is considered. These include Equation (10) for the 

isothermal isobaric system, despite the system being non-isothermal, and the equation 

1 2
1 1 1 2 2 2 0n q n q

T T

 
 

    
        

    
 (14) 

where iq is the heat of transport [1,2] utilized in non-equilibrium thermodynamics. The heat of 

transport is equal to the ratio of Onsager kinetic coefficients, which we discuss further in the next 

section. It characterizes the heat transported by the particle in the isothermal the system or the heat 

directly carried out by the specific particle in its directed movement. As it will be shown further, 

Equation (14) is necessary for providing the invariance in the independent material fluxes. 

The authors of [7] make no attempt to justify this equality or explain its physical meaning, nor 

do they indicate how this set of equations is transformed in moving the system to equilibrium. As a 

result, a hybrid set of Gibbs-Duhem equations of mixed origin (equilibrium–nonequilibrium) is 

derived axiomatically, while the condition of mechanical equilibrium is left unaddressed.  

We re-emphasize that the establishment of mechanical equilibrium is necessary only for closed 

steady-state systems. If the system is open and/or non-steady state, it is out of mechanical 

equilibrium, leading to directed motion of particles through the system. In [15], the pressure gradient 

given by the Gibbs-Duhem equation [Equation (7)] is used in the right-hand side of the Navier-Stokes 
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equation in calculations of the surface flow profile in a hydrodynamic approach to thermophoresis, 

but use of the Gibbs-Duhem equation necessitates the complete absence of hydrodynamic flows in 

the system.  

3. Entropy Production, Thermodynamic Forces and Fluxes  

In non-equilibrium thermodynamic theory, the derivation of entropy production expressed 

through thermodynamic forces and fluxes is based on the time derivative of Equation (1): 

1 N
k k

k

dnds du

dt T dt T dt


   (15) 

The function 
ds

dt
 is defined as entropy production in the uniform system, it is the important 

parameter in non-equilibrium thermodynamics. The significance of entropy as a basic parameter is 

emphasized in Einstein’s expression for the probability of fluctuations in a system [1], which contains 

the exponent 
S

ke


, where S  is the change of system entropy in the transition from equilibrium to 

the state under consideration. Thus, entropy change is necessary to describe the transition to a given 

non-equilibrium state. In the approach taken in [1], the time derivatives 
ds

dt
, 

du

dt
, and kdn

dt
 in 

Equation (15) are substituted with partial derivatives in the respective equations of conservation: 

k
k

n
J

t


 




 (16) 

and 

u

u
J

t


 




 (17) 

The total derivatives 
ds

dt
, 

du

dt
, and kdn

dt
 can be substituted for their respective partial 

derivatives from Equations (16) and (17) in closed systems without any hydrodynamic flows because 

the partial and total time derivatives are identical (see the explanations above Equation (2.8) in [3]). 

Substituting Equations (16) and (17) into Equation (15), and using the rule of differentiation for 

the product of scalar (thermodynamic force) and vector (thermodynamic flux), we obtain: 

1u k k k
u k

k k

J Js
J J

t T T T T

  
       

  
 

 
 

 (18) 

Comparing Equation (18) to the standard equation for conservation of entropy [1] 

S

s
J

t



 




 (19) 

the right-hand side of the former is the expression for entropy production   arising from 

thermodynamic fluxes uJ


 and kJ


 conjugated with the respective thermodynamic forces 
1

T
  

and k

T


 , i.e.,  

1 k
u k

k

J J
T T


    

 
 (20) 
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In principle, the term expressing entropy production from viscous friction should be included 

in Equation (20), as stated by the authors of [15], since viscous dissipation heats the medium. 

However, substituting appropriate numeric values into the thermal conductivity equation shows that 

such heating is negligible (see Equation (50.2) in [4]). 

The flux of internal energy and material corresponds to transport of internal energy and mass, 

respectively. These fluxes can be written as phenomenological linear combinations of the relevant 

thermodynamic forces, where the matrix of kinetic coefficients is symmetric according to the Onsager 

reciprocity principle: 

1 k
u k uu uk

k

J n L L
T T

 
    

 



 (21) 

1 i
k k ku ki

k

J n L L
T T

 
    

 



 (22) 

In Equations (21) and (22) and below, the Onsager kinetic coefficients are molecular parameters 

related to single molecules. The expression for material flux given by Equation (22) is the key equation 

in non-equilibrium thermodynamic theories of mass- and thermodiffusion in liquids, while the 

energy flux can be considered as preset and defined by boundary conditions associated with an 

experimental design.  

In [2] the derivation of Equations (21) and (22) is modified to consider the change in volume. The 

author of [3] follows those in [1] to derive thermodynamic fluxes for unit volume, while in [4] the 

chemical potential and specific volume of the mixture, rather than those of individual components, 

is used in deriving the time derivative of the Gibbs equation. Subsequently, the conservation 

equations for mass concentration c and complete specific energy (potential plus kinetic energy of the 

unit mass) are derived and substituted into the time derivative of the specific dissipative function 
*Tds . The resulting flux equations are:  

i T      


 (23) 

q i T        
  (24) 

Here i


 and q


 are the relative mass and heat flux, respectively, and parameters , , ,    

and   are kinetic coefficients. We note that kinetic coefficients in this approach are not Onsager 

coefficients in the strict sense, but allow the equations to be written in a more common form. 

Equations (23) and (24) differ from Equations (21) and (22) in their absence of temperature in the 

denominator and in defining only the relative flux of two materials in a binary mixture.  

4. Transformations of Thermodynamic Fluxes and Conservation of Mass 

The non-equilibrium thermodynamic approach should yield unambiguous equations for the 

thermodynamic fluxes [Equations (21) and (22)]. However, some approaches shift certain terms from 

the expression for material flux [Equation (22)] to that for internal energy flux [Equation (21)]. We 

will focus our attention on the expressions derived for material flux, since they are substituted into 

the continuity equations [Equation (16)] to calculate component concentration distributions. By 

contrast, expressions for heat or internal energy flux are preset by boundary conditions and/or the 

distribution of heat sources.  

In approaches used in [1–3,5–7] certain terms in the material flux [Equation (22)], such as the 

terms including temperature gradient in the chemical potential, are shifted from the equation for 

material flux to that for heat flux. Below, we will discuss these transformations for a binary system. 

We begin with the general expression for material flux, which includes explicit differentiations for 

the pressure, temperature, and concentration dependencies of the chemical potential. 
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Differentiating Equation (22) we obtain the following general equation for material flux for non-

electrolyte systems in the absence of chemical reactions:  

2 2
, 1,2

ki i i i
k k ku k i k

k i k

LT T
J n L n T p n

T T T T p n

  




      
                




 (25) 

Equation (25) is transformed in various ways in the literature. The off-diagonal kinetic 

coefficients 
kiL  are usually ignored. In [1–3,5], for example, all the terms that contain a temperature 

gradient are shifted to the equation for heat flux. Furthermore, the pressure gradient is assumed to 

be zero and the dependence of a given component flux on the chemical potentials of other 

components is ignored. The resulting expression for the material flux is 

,

2

kP Tkk
k k ku k i

i i

LT
J n L n n

T T n


   





 (26) 

In these approaches that ignore the off-diagonal kinetic coefficients 
kiL , thermodiffusion is 

related to the presence of the cross-coupling between the heat and material fluxes through the term 

1
kuL

T
 , which is a kinetic effect.  

In [4], the term 
T




 is contained in the following derived expression for relative material flux: 

, ,

1 2

P c P Tku
k kk k kk

L
J n L T n L c

T T c

   
      

  


 (27) 

Here  and c are determined by Equations (3) and (4). According to [4] and Equation (27) 

thermodiffusion (determined by the terms in brackets) is related to both the above cross-coupling 

and the molecular entropy of the mixture, as determined by the term ,P c

T




. Thus, in this theory the 

nature of thermodiffusion is a mixed kinetic-entropic nature. In [6,7] Equation (22) is used to derive 

the absolute material flux for single and multi-component mixtures in non-isothermal systems 

assuming 0p  , although in [7] the other terms in Equation (25) are retained: 

2
kk k k

k k ku k k i
i i

LT T
J n L n T n

T T T T n

 


    
          




 (28) 

Finally, Equation (25) with zero off-diagonal kinetic coefficients is used to derive an expression 

for material flux in [16], where the pressure gradient is determined by the general Gibbs-Duhem 

equation [Equation (7)]: 

2
,

k

kk k i i k
k ku k k k i j i

i i j ij i

J

LT T
n L n T v n T n n

T T T T T n n

   




       
                    

  



 (29) 

Thus, at least four different approaches are used in the literature to distribute terms from the 

general non-equilibrium thermodynamic theory into expressions for heat and material flux. All of 

these arrangements begin with the same expression for entropy production but yield different 

expressions for the component concentration distributions in a temperature gradient. Each of these 

expressions except [16] assume constant pressure and could, therefore, be improved by using the 

general form of the Gibbs-Duhem equation for the pressure gradient [Equation (7)]. Nevertheless, 

not all approaches can be valid, since they produce significantly different results. 
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There is also the issue of equivalence or invariance in the expressions for material flux related to 

the frame of reference used in solving the transport equations. All material fluxes must be expressed 

in a consistent way using one of the four Equations (25)–(29) and supplemented by the expression for 

conservation of matter 

k k
k

v J I
 

 (30) 

Here, I


 is the net volumetric flux of various kinds of particles passing through the system, 

which is determined in different ways in the literature. Equation (30) is obtained by summing the 

component volume fractions of particles, which should be conserved according to Equation (6). Most 

works incorrectly assume that Equation (30) is satisfied automatically. 

In [1–3,5] the net flux I

 is defined as the flux corresponding to the mass-averaged velocity of 

particles contained in the system. In cases where the thermodynamic mass- and thermodiffusion 

fluxes are derived in a barycentric system, the thermodynamic material fluxes are considered to be 

the only fluxes that provide for a constant position of the center of mass; other fluxes corresponding 

to motion of the mass center are assumed to be convective and ignored in the context of mass or 

thermodiffusive flux. However, any kind of mass- or thermodiffusion transport in a system where 

components are distinct in their mass density will change the center of mass position. The simplest 

example is isotope mass- and thermodiffusion, where a change in the center of mass is unavoidable 

even in absence of convection. Moreover, in deriving Equation (20) for entropy production, Equations 

(16) and (17) for the convection-free system are substituted into Equation (15), expressing the time 

derivative of the Gibbs equation. Such an approach is valid only for a hydrodynamically stable and 

closed system, where net material flux is zero.  

In [1,2,5], the non-equilibrium thermodynamic expression for material flux [Equation (22)] in a 

binary system is written for one component only, defined as the independent component; the flux of 

the second component is considered dependent and eliminated using Equation (30). In [3,5] the need 

to place restrictions on the Onsager kinetic coefficients, in order to provide for material conservation 

[Equation (30)], is noted but not discussed in detail. In [4] the requirement of material conservation 

is omitted. Finally, in [7] Equation (22) for material flux is combined with the expression [Equation 

(30)] for material conservation. 

5. Principles of Zero Thermodiffusion in Pure Liquids and Invariance of Component Fluxes in an 

Overdetermined System  

In this section we derive an unambiguous set of non-equilibrium thermodynamic equations for 

material flux in non-isothermal systems. We begin with an explanation of the principle of zero 

thermodiffusive flux in a pure liquid.  

5.1. Non-Isothermal Material Transport as an Effect that Occurs Only in Mixtures 

Although non-isothermal material transport is observed in liquid solutions, colloidal 

suspensions, and even pure liquids, it is a mixture or two-phase effect. In pure liquids, however, 

thermoosmosis is often conjugated with thermodiffusion. Thermoosmosis is related to the interaction 

between moveable molecules of liquid and a steady-state solid wall that has physical properties 

distinct from those of the liquid. A derivation of thermoosmotic flux using hydrodynamic theory can 

be found in [17]. To summarize, a surface liquid-solid potential established at the walls will lead to a 

temperature-induced pressure gradient within a thin interfacial layer at the liquid-wall boundary. 

That pressure gradient causes what is commonly referred to as thermoosmotic “slip” flow. An 

interfacial potential is established because molecules in the wall have different physical parameters 

than those in the liquid, leading the latter to become distinctly arranged. Thus, thermoosmosis is 

inherently a two-phase phenomenon.  
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Thermodiffusion can be considered as thermoosomosis in a reference framework in which the 

liquid is steady-state and the solid wall representing a solid particle or molecule is moving. 

Thermoosmosis ceases to exist when molecules of the wall have identical physical parameters to 

molecules of the pure liquid, just as thermodiffusion ceases to exist when two different molecules 

have the same physical properties or when there is only one type of molecules in the system. Consider 

an imaginary system in which a plane divides a pure liquid into two parts. In such a system, the 

interfacial potential causing slip flow will be absent because the forces acting on molecule of liquid 

from either side of the plane are equal. Now consider a colloidal particle or molecule surrounded by 

liquid. The only difference from the former system is that a pressure distribution around the curved 

surface of the particle can be calculated using thermodynamic methods for small systems [18]. 

Likewise, for molecular mixtures, thermodynamic methods for small systems can be applied to a 

single solute particle [19]. While in principle, material flux can occur even in pure liquids due to the 

entropic mechanism expressed by k T
T





, in space-filling liquids this flux is cancelled by an equal 

flux of particles moving in the opposite direction, which move to fill the cavities arising from entropic 

motion. According to Equations (12) and (13) both the complete change in entropy and the respective 

material flux due to entropy in pure liquids must equal zero. Thus, non-isothermal material transport 

in mechanically stable and unbounded pure liquids must equal zero. Mathematically, this means that 

material fluxes must be expressed through component physical parameters, which become zero 

when physical differences between the components approach zero, e.g., in a single-phase pure liquid.  

5.2. Invariance with Changes in the Component Concentration and Component Fluxes Defined as Dependent 

Versus Independent 

In a closed steady-state system the condition of mechanical equilibrium is strictly expressed by 

the Gibbs-Duhem equation. Instead of expressing material conservation by Equation (30), we can use 

the softer condition 

0kJ 


 (31) 

In such a system having two components, there exists three equations to characterize the 

behavior of the system: 

 1 1 2, 0J   


 
(32) 

 2 1 2, 0J   


  (33) 

1 2 1    (34) 

Equation (34) is equivalent to Equation (6) with component concentrations defined in terms of 

the volume fraction k k kn v  . Using volume fractions the material flux can be expressed in one of 

two ways, that is, by using either 1 or 2  as the independent variable. As a result, we have four 

equations to be met in expressing the component concentration distribution: 

 1 1 2 1, 0J      


 (35) 

 2 1 2 1, 0J      


  (36) 

and  

 1 2 1 2, 0J      


 (37) 
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 2 2 1 2, 0J      


  (38) 

In Equations (35)–(38) one of the component concentrations can be excluded as a dependent 

variable through the use of Equation (34), while the other is defined as the independent concentration 

variable. All possible forms of Equations (35)–(38) must yield the same concentration distribution of 

components in the system. This requirement forms the foundation for the following principle of 

concentration invariance: 

the same component concentration distribution must be obtained from material transport 

equations regardless of which concentration is considered to be independent and which expression 

for the component material flux is used in calculations.  

This simple and obvious principle will be used to select a set of expressions for material flux that 

is consistent with a physically meaningful description of non-isothermal mixtures. In this way, we 

identify a unique system of equations (or multiple equivalent systems of equations) for material 

transport. 

Note, that the principle of concentration invariance has two components that are similar but 

different. First is the invariance regarding the selected independent concentration; second is the 

invariance of the selected independent material flux regardless of the steady-state material transport 

equation selected among Equations (35)–(38). 

6. Evaluation of Non-equilibrium Thermodynamic Expressions for Material Flux in the Literature 

for Compliance with Three Criteria 

In this section we examine all the possible combinations of expressions for material fluxes and 

Gibbs-Duhem equations for their compliance with the following three criteria: (1) maintenance of 

mechanical equilibrium in a closed steady-state system, as expressed through a form of the Gibbs-

Duhem equation that accounts for gradients in concentration, temperature, and pressure; (2) 

thermodiffusion being absent in pure unbounded liquids (i.e., in the absence of wall effects); (3) 

invariance in the derived component concentrations regardless of which concentration is considered 

to be the dependent versus independent variable and which component material flux is used in an 

overdetermined system. In performing this evaluation, we will invoke the Soret coefficient, which is 

commonly used to quantify thermodiffusion: 

   
2 1

2 1 2 1

2 2 1 1

;   0 at , 0
1 1

T TS S v v
T T

 
 

   

 
      

   
 (39) 

6.1. Thermodiffusion as a Kinetic Effect Caused by the Cross-Coupling of Heat and Material Transport [1–

3,5,6] 

We begin our analysis of the most common thermodynamic models that contain a kinetic 

component within the expression for material flux given by Equation (26). Utilizing Equation (34) 

and the standard rule of differentiation of composite functions on terms containing the concentration 

gradients, we obtain 

2
1

2 2 2
1 2 1 2 2

2k k k k
l

l l

   
   

    

   
      

    
  (40) 

When the volume fraction of either the first or second component is eliminated from equations 

for material flux as outlined above, the resulting expression is identical in either case except that 1 

is replaced with 2 . Thus, expressions including Equation (40) satisfy the first component of the 

principle of concentration invariance. 
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Using the approach in [1–3,5–7] to define material flux, with 2  as the independent 

concentration in a closed steady-state system, we obtain 

1 1
2

2

2 2
2

2

0 2

0 2

q
T

T

q
T

T












    




   



 (41) 

where 

iu
i

ii

L
q

L
  (42) 

is the heat of transport mentioned above, defined as the energy transferred by particle movement in 

the absence of a temperature gradient [1–3].  

Substituting the Gibbs-Duhem equation defined in [1–3,5–7] and Equation (7) above in the form  

2 1 2 2
2 2

1 2 2 2

1
0

v v

   
 

 

  
   

 
 (43) 

into Equation (41) we obtain two equivalent steady-state material transport equations, provided the 

following condition for the heats of transport is fulfilled: 

2 2
1 2

1 2

1
0q q

v v

 
   (44) 

Equation (44) is the restriction put on the kinetic coefficients to yeild the invariance in the 

material fluxes. According to Equation 44, the heat of transport becomes zero in pure liquids. This 

conclusion seems not be true since the heat should be transferred by moving particles even in the 

pure liquids.  

Using Equations (26), (31), (41), (43), (44), the Soret coefficient can be written as  

   

   

2 1

1 2
2 2 2

2 1

2 1

2 1
2 2 2 2

2 2

4 1 1

2 1 2 1

T

q q
S

v
T

v

q q

T T


  



 
   

 


  

 
     

  
 

 
 

 (45) 

Equation (45) indicates that the approach of [1–3,5–7] provides for both the principle of 

concentration invariance [using Equation (44) which was not considered in these works] and the 

absence of thermodiffusion in pure liquids but cannot provide for mechanical equilibrium in a non-

isothermal system, since the utilized Gibbs-Duhem equation includes no entropic terms k T
T





. 

Furthermore, because thermodiffusion is considered a kinetic effect caused by the cross-coupling of 

heat and material transport, the expression for material flux [Equation (41)] does not allow for the 

insertion of a distinct form of the Gibbs-Duhem equation to account for temperature-induced 

gradients in the pressure or molecular entropy. 

6.2. Thermodiffusion as a Mixed Kinetic-Thermodynamic Effect According to the Modified Approach Used in 

[4] 
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In [4] thermodiffusion is modeled as a mixed kinetic-thermodynamic effect, defined by the 

relative motion of components caused by molecular entropy and a cross-coupling between heat and 

material transport. In such an approach the principle of concentration invariance plays no role. 

However, the approach does provide the compliance the principle of zero thermodiffusion in pure 

liquids. We modify the approach used in [4] to obtain the thermodiffusion characteristics of 

individual components. 

A similar method to that used above can be applied to this evaluation, using chemical potentials 

of the individual components instead of the chemical potential of the mixture. In this case, the 

expressions for zero material flux analogous to Equation (23) can be written as  

1 1 1
2

2

2 2 2
2

2

0 2

0 2

q
T

T T

q
T

T T

 




 




  
      

  

  
     

  

 (46) 

We note the obvious relation of coefficient 2  with its respective counterpart in Equation (23). 

When we write the “isothermal” Gibbs-Duhem equation in the form of Equation (43), according 

to the approach used in [1–3,5–7] where pressure and temperature gradients are ignored, the 

principle of concentration invariance can be satisfied by defining the following equality: 

  1 2
2 1 2 21 0T q T q

T T

 
 

    
       

    
 (47) 

The expressions in brackets are subsequently designated 
*
iq . In this approach parameter 

*
iq  

plays the same role as parameter iq  in the previous section. Thus, expressions similar to Equations 

(43)–(45) can be written where iq  is replaced with 
*
iq . Likewise, the Soret coefficient can be 

expressed by an equation similar to Equation (45) with parameter iq  replaced by iq . Thus, the 

approach also satisfies the principle of concentration invariance, as well as the absence of 

thermodiffusion in pure liquids. However, the nature of thermodiffusion becomes mixed because the 

temperature-induced concentration gradient is determined by both the kinetic factor iq  and the 

molecular entropy i

T




. Furthermore, the approach does not provide for mechanical equilibrium in 

a non-isothermal system because the Gibbs-Duhem equation that is used in the derivation lacks the 

entropic term i T
T





. 

6.3. Thermodiffusion as a Mixed Entropic-Kinetic effect With Cross-Coupling Between Heat and Material 

Transport according to the Approach Used in [7] 

The selection of adequate material transport equations depends on the form of the Gibbs-Duhem 

equation that is used to describe the steady-state system, as well as on the specific form of the 

expression used for material flux. In [7] the material fluxes in a steady-state system are written as  

1 1 1 1
2

2

2 2 2 2
2

2

0 2

0 2

q
T T

T T

q
T T

T T

  




  




  
     

 

  
     

 

 (48) 
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which corresponds with the material flux determined by Equation (10). The Gibbs-Duhem equation 

has the same “isothermal” form as Equation (43), and the equation providing the principle of 

concentration invariance can be expressed as 

2 1 1 1 2 2 2 2

1 2

1
0

q q

v T T v T T

            
      

    
 (49) 

Each expression in brackets can be designated by 
iq

T



. Calculations similar to those made in 

the derivation of Equation (45) yield similar expressions for the Soret coefficient, where parameter 

iq

T



 replaces iq

T
 in Equation (45). Thus, this approach provides for both the principle of 

concentration invariance and the absence of thermodiffusion in pure liquids but does not provide for 

mechanical equilibrium in a non-isothermal system. 

In summary, the theoretical approaches analyzed in this section can yield the absence of 

thermodiffusion in pure liquids only with the assumption that 0i

T





 in the Gibbs-Duhem 

equation. Since the temperature derivative of the molecular chemical potential is molecular entropy, 

in a non-isothermal system this means that molecular entropy is assumed to be zero, which is 

unacceptable.  

Although the models including zero pressure gradient cannot provide for mechanical 

equilibrium in non-isothermal systems, the obtained results can be used to analyze some theoretical 

ideas in literature. One such idea using the concepts of thermophilicity-thermophobicity of 

components is discussed in Appendix.  

6.4. Thermodiffusion as an effect caused by molecular entropy derived from the pressure gradient calculated 

from the complete Gibbs-Duhem equation according to the Approach Used in [19] 

Substituting the pressure gradient p  expressed by the general form of the Gibbs-Duhem 

equation [Equation (7)] into Equation (25) for material flux we obtain two equations [Equation (29)] 

for the material fluxes, where the volume fractions 1 and 2  are dependent and independent 

concentrations, respectively. For a steady-state closed system where the fluxes are zero: 

11 1 1
2 2 2 2

1 2

22 2 2
2 2 2 2

2 2

0 (1 ) 2 (1 )

0 (1 ) 2

L q
T T

v T T T

L q
T T

v T T T

 
   



 
   



      
            

     

      
          

     

 

 
 (50) 

Here,   is the chemical potential of the mixture defined by Equation (12). 

Both expressions given by Equation (50) yield the same equation determining concentration 

distribution:  

2

2

2 0T
T

 




 
   

 

 
 (51) 

provided the heats of transports satisfy the following equality: 

i iq   (52) 
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According to Equation (52) the heat transferred by a particle is equal to its mean energy in the 

system, as expressed by the chemical potential. Such a restriction placed on the Onsager coefficients 

is consistent with the ideas proposed in [3].  

As outlined in [19] incorporation of the requirement established by Equation (52) provides for 

at least one model of material transport that is compliant with all three criteria necessary to obtain a 

valid thermodynamic model of thermodiffusion based on entropy production. It is easy to see that 

combined with Equation (52), Equation (50) for material flux satisfies the principles of invariance. 

The resulting stationary material transport equations obtained by the model can be written as: 

 2 2 2

2

1 2 0T
T

 
  



  
     

  

 
 (53) 

The model also provides for mechanical equilibrium in a non-isothermal steady-state liquid 

mixture in a closed system, and shows that to achieve such equilibrium a non-zero pressure gradient 

must be established. Furthermore, the transport equations in this model yield zero mass flux in pure 

liquids, which is consistent with the general thermodynamic expression of the Soret coefficient: 

 2 2

2

2 1

P

T
P

TS




 













  (54) 

Note that Equation (12) which determines the chemical potential of mixture P  at constant 

pressure is the chemical potential of a considered particle 2  minus the sum of the chemical 

potentials of all molecules of liquid displaced by the particle 
2

1

1

v

v
 . This parameter appears as a 

result of considering the pressure gradient in the space-filling mixture. The displaced volume of 

liquid can be considered as a virtual particle consisting of the non-displaced component. Thus, 

Equation (54) predicts that thermodiffusion is non-zero only if the chemical potentials of the real 

particle and virtual particle are different.  

6.5. Non-Steady State Systems 

Discuss briefly nonstationary systems. In non-steady-state closed non-isothermal systems, 

where mechanical equilibrium is absent, the pressure gradient should be determined by substituting 

the expressions for material flux given by Equation (25) into Equation (30) and utilizing the equality 

expressed by Equation (56) for a closed system (with I = 0). A detailed description of this approach 

can be found in [20,21]. For the sake of brevity, we present only one of two non-steady-state material 

transport equations: 

 2 2 2

22 22

1 22
2 2

2 11

1 2

1

T
TL

v Lt T
v L

 
  



 

  
    

    
  

 

 (55) 

This expression is transformed into Equation (53) for steady-state systems but the coefficients of 

mass diffusion and thermodiffusion, which are expressed by the separate terms in brackets in the 

numerator, are modified by parameter    1 22
2 2

2 11

1
v L

v L
 in the denominator. This modifying 

parameter is related to the dynamic pressure gradient established by hydrodynamic friction in a non-
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steady-state system and arises from the expression of material conservation in non-steady-state 

systems described by Equation (30) rather than Equation (32). This hydrodynamic factor can 

significantly reduce both the mass and thermodiffusion coefficients of large particles, even in a 

moderately concentrated binary mixture. Note that the hydrodynamic factor approaches unity at 

1 22

2 11

1
v L

v L
 that is, when the Stokes-Einstein diffusion coefficients or hydrodynamic radii of the 

components are equal. In this case, the pressure gradient is expressed by the Gibbs-Duhem equation, 

even for non-steady state systems. 

7. Conclusions 

To obtain adequate material transport equations for non-isothermal systems, it is necessary to 

consider the temperature-induced pressure gradient formulated by the Gibbs-Duhem equation, in 

order to satisfy three criteria: (1) mechanical equilibrium in steady-state closed system; (2) invariance 

of material transport equations under any choice for the independent material flux and concentration; 

and (3) the absence of thermodiffusion in a pure liquid. Material transport equations that assume a 

zero pressure gradient cannot satisfy all three principles. Satisfying the three criteria also requires the 

heat of transport to be equal to the respective chemical potential with the opposite sign.  

Appendix 

Equations (44), (47), (53) provide for the principle of concentration invariance. Similar equation 

is used in [7] [see the discussion around Equation (14)]. Here, we consider the notion of using 

thermophobicity or thermophilicity of pure components as a parameter that can predict the 

properties of liquid mixtures in a temperature gradient [22]. The concept is based on an equation for 

the Soret coefficient similar to Equation (45) derived in [7], where the Soret coefficient is proportional 

to the difference in the net heats of transport of pure components or other similar parameters. 

For example, consider the heats of transport used in Equation (45), although the same conclusion 

is reached with the use of other similar parameters that include terms responsible for the individual 

thermophobicity or thermophilicity of components 0iq  and a term b corresponding to the interaction 

between components. Consider an equimolar mixture, where 1 2n n , and Equation (44) can be 

written as  

1 2 0q q   (A1) 

In this case, according to [22], the Soret coefficient is proportional to the difference 20 10q q  of 

the pure components. Accounting for Equations (44) and (A1) this expression can be written as 

   2 1 20 10 2 1 20 102 2 2 2q q q q q q q b q b          (A2) 

The value of the interaction parameter bdepends on the properties of both components. Thus, 

the idea that one can rely solely on some pre-defined measure of component thermophobicity or 

thermophilicity to predict thermodiffusion of mixture is impossible; any predictive model must 

include component interaction parameter(s), in order to comply with the basic principles used to 

derive the Soret coefficient of a mixture. 
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