Entropy fluctuations reveal microscopic structures

George Ruppeiner

New College of Florida

18-30 November 2019 5'th International Electronic Conference on Entropy and Its Applications

George Ruppeiner (New College of Florida)

A (10) > A (10) > A (10)

Here is my talk outline

Uniformity prevails at the macroscopic level

George Ruppeiner (New College of Florida)

Structure emerges at mesoscopic length scales

George Ruppeiner (New College of Florida)

Entropy fluctuations ...

Web 2019 4 / 30

The basic structure is well known

open fluid volume V, energy U, particle number N

George Ruppeiner (New College of Florida)

Entropy fluctuations ...

Web 2019 5 / 30

Thermodynamic fluctuation theory gives the probability

• Einstein (1904) $(k_B = 1)$

probability $\propto \exp(S_{universe})$.

• Expand entropy S_{universe} about its maximum:

probability $\propto \exp\left(-\frac{1}{2}g_{\mu\nu}\Delta x^{\mu}\Delta x^{\nu}\right)$,

where
$$(x^1, x^2) = (U, N)$$
,

 $g_{\mu\nu} = -rac{\partial^2 S}{\partial x^{\mu} \partial x^{\nu}}$, heat capacities, etc.

and S is the thermodynamic entropy.

George Ruppeiner (New College of Florida)

A thermodynamic information metric results

• $\Delta \ell^2 = g_{\mu
u} \Delta x^\mu \Delta x^
u$ is a probability "distance."

• Greater distance has a less probable fluctuation.

This is the entropy metric. Weinhold (1975), Ruppeiner (1979)

• Related to Fisher-Rao metric (1945).

Brody, Diósi, Dolan, Ingarden, Janyszek, Johnston, Mrugała, Salamon

The Ricci curvature scalar R follows

• Metric leads to the curvature scalar *R*.

• Thermodynamic *R* has units of volume.

• *R* is always a feature of a Fisher-Rao metric.

Physical interpretation requires additional theory.
 Ruppeiner (1983), Diósi and Lukáks(1985)

A (10) > A (10) > A (10)

R is a signed quantity

R can be negative, zero, or positive.

I use Weinberg's (1972) sign convention.

George Ruppeiner (New College of Florida)

Entropy fluctuations ...

R has been calculated in many models

Model	n	d	<i>R</i> sign	R divergence
Ideal Bose gas	2	3	11 Sigit	$T \rightarrow 0$
Ising ferromagnet	2	1	_	$T \rightarrow 0$
Critical regime			_	critical point
Mean-field theory	2		_	critical point
van der Waals (critical regime)	2	3	_	critical point
Spherical model	2	3	_	critical point
Ising on Bethe lattice	2 2 2 2 2		_	critical point
Ising on random graph		2	_	critical point
q-deformed bosons	2 2	2 3	_	critical line
Tonks gas	2	1	_	R small
Ising antiferromagnet	2 2	1	_	R small
Ideal paramagnet	2		0	R small
Ideal gas	2	3	ŏ	R small
Multicomponent ideal gas	> 2	3	+	R small
Ideal gas paramagnet		3		R small
Kagome Ising lattice	2	3 2	+	critical line
Takahashi gas	3 2 2	1	+ ± ±	$T \rightarrow 0$
Gentile's statistics	2	3	+	$T \rightarrow 0$
M-statistics	2 2	2,3	± ±	$T \rightarrow 0$
Anyons		2	+	$T \rightarrow 0$
Potts model $(q > 2)$	2 2 2	1	± ± ±	$T \rightarrow 0$
Finite Ising ferromagnet	2	1	+	$T \rightarrow 0$
Ising-Heisenberg	2	1	±	$T \rightarrow 0$
g-deformed fermions	2 2	3	+	$T \rightarrow 0$
Ideal Fermi gas		2,3	+	$T \rightarrow 0$
Ideal gas Fermi paramagnet	2 3 2	3	+	$T \rightarrow 0$
Unitary thermodynamics	2	3	+	$T \rightarrow 0$
,	-	-		

George Ruppeiner (New College of Florida)

_

A number of authors made model calculations ...

- S. Bellucci
- J. Chance
- B. P. Dolan
- D. W. Hook
- H. Janyszek
- K. Kaviani
- R. P. K. C. Malmini
- H.-O. May
- H. Mohammadzadeh
- J. Nulton
- H. Oshima
- N. Rivier
- A. Sahay
- T. Sarkar
- Z. Talaei

- D. Brody
- A. Dalafi-Rezaie
- H. Hara
- W. Janke
- D. A. Johnston
- R. Kenna
- P. Mausbach
- B. Mirza
- R. Mrugała
- T. Obata
- A. Ritz
- G. Ruppeiner
- P. Salamon
- G. Sengupta
- M. R. Ubriaco

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

George Ruppeiner (New College of Florida)

The sign of *R* characterizes interactions

• R < 0 for attractive interactions.

• R > 0 for repulsive interactions.

• R = 0 for the ideal gas (noninteracting).

George Ruppeiner (New College of Florida)

 \ldots and |R| measures mesoscopic cluster size

• *R* diverges at critical points $(R \rightarrow -\infty)$.

• $|\mathbf{R}| \propto \xi^d$, with correlation length ξ .

• $R = -2 \xi^d$, asymptotically.

George Ruppeiner (New College of Florida)

イロト 不得 トイヨト イヨト ニヨー

(a) the ideal gas shows zero R

George Ruppeiner (New College of Florida)

イロト イヨト イヨト イヨト

(b) the rare-field gas shows small negative R

(c) the liquid shows small negative R

(d) the solid phase shows small positive R

(e) the critical point shows $R \to -\infty$

イロト イヨト イヨト イヨト

(f) the coexistence curve has equal *R*'s in the phases

(g) the repulsive cluster, with R > 0, is logical

• • • • • • • • • • • •

(h) the ideal Bose gas attracts

(i) the ideal Fermi gas repels

George Ruppeiner (New College of Florida)

Entropy fluctuations ...

✓ ≣ ▶ ≣ ৩৭০
 Web 2019 22/30

イロト イヨト イヨト イヨト

(j) the anyon transition from Bose to Fermi

George Ruppeiner (New College of Florida)

(k) the 2D Ising critical point shows $R \to -\infty$

ferromagnetic Ising spins

- + + + + +

(I) the 1D Ising critical point shifts to $T \rightarrow 0$

(m) the 1D Ising antiferromagnet looks liquid-like

(n) the BTZ black hole looks like an ideal gas

George Ruppeiner (New College of Florida)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(o) the Kerr black hole resembles Fermi gas as $T \rightarrow 0$

George Ruppeiner (New College of Florida)

Entropy fluctuations ...

▶ ৰ ≣ ▶ ≣ ৩৭০ Web 2019 28/30

(p) the RN-AdS black hole has a critical point

George Ruppeiner (New College of Florida)

Conclusion: calculate R whenever you can!

- R measures mesoscopic structures naturally.
- Other thermodynamic functions can be useful, but which "are right"?
- *R* is invariant and universal.
- R is always available!