
	

	
	

Welcome	to	my	talk	on	thermodynamic	information	geometry.	
My	basic	theme	is	that	spontaneous	fluctuations	that	decrease	
the	local	entropy	within	some	system	indicate	the	formation	of	
organized	temporary	structures	at	the	mesoscopic	length	scale.	
I	hope	to	persuade	you	that	the	Ricci	curvature	scalar	R	of	this	
geometry	provides	information	about	the	character	of	these	
structures,	and	that	R	is	an	essential	feature	of	
thermodynamics.	
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Here	is	how	my	talk	organizes.	I	start	by	discussing	entropy	
fluctuations,	and	the	natural	role	they	play	in	forming	internal	
system	structures.	This	discussion	leads	naturally	to	the	
information	geometry	of	thermodynamics,	and	the	
indispensable	thermodynamic	curvature	R.	R	connects	to	the	
formation	of	fluctuating	structures	at	the	mesoscopic	length	
scales.	I	conclude	with	a	list	of	some	mesoscopic	structures	and	
their	thermodynamic	signatures.	The	list	spans	encompass	
fluids,	magnetic	systems,	and	ends	with	black	holes.	
	 	

Here is my talk outline

Thermodynamic information geometry

Thermodynamic Ricci curvature scalar R

R and interactions at the mesoscale

Fluids, spins, and black holes

Entropy fluctuations
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Here	is	a	sketch	of	a	fluid	at	the	macroscopic	length	scale.	
Uniformity	prevails	here.	But	look	through	a	magnifying	glass,	
and	the	situation	looks	quite	different.	
	 	

Uniformity prevails at the macroscopic level

Pure fluid
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This	magnified	mesoscopic	image	shows	a	group	of	atoms	that	
have	banded	together	under	the	influence	of	their	attractive	
interatomic	interactions,	such	as	prevail	near	a	critical	point.	
Such	groupings	of	atoms	always	reduce	the	local	entropy,	an	
entropy	reduction	predicted	by	thermodynamic	fluctuation	
theory.	However,	we	need	some	mathematical	apparatus	to	
bring	this	out.	
	 	

Structure emerges at mesoscopic length scales

Pure fluid
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Here	is	the	foundation	of	the	mathematical	set-up.	In	this	
magnified	view,	the	blue	surroundings	represent	the	uniform	
environment	of	the	previous	slide.	We	zoom	in	on	an	open	sub	
volume	within	the	fluid,	and	we	imagine	keeping	track	of	the	
number	of	particles	and	the	energy	present	inside	it.	These	
quantities	jitter	back	and	forth	as	particles	in	the	fluid	flow	in	
and	out	of	the	sub	volume	from	the	larger	environment.	This	
jitter	contains	key	information.	
	 	

The basic structure is well known

open fluid volume V, energy U, particle number N

(U, N)

Environment

Jitter contains key information!

        jitter
back and forth
(U, N)
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Thermodynamic	fluctuation	theory	is	given	in	all	the	books	on	
statistical	mechanics;	for	example,	Landau	and	Lifshitz.	The	
fluctuation	probability	is	given	by	the	exponential	of	the	
entropy	of	the	universe,	Einstein's	famous	formula.	
Fluctuations	take	place	about	the	state	of	maximum	entropy,	
about	which	we	can	expand	to	second-order.	The	Hessian	of	
the	entropy	function	in	this	expansion	consists	of	
thermodynamic	quantities	like	heat	capacity	and	
compressibility.	
	 	

Thermodynamic fluctuation theory gives the probability

Einstein (1904) (kB = 1)

probability / exp (Suniverse).

Expand entropy Suniverse about its maximum:

probability / exp
�
�1

2gµ⌫�xµ�x⌫
�
,

where (x1, x2) = (U,N),

gµ⌫ = � @2S
@xµ@x⌫

, heat capacities, etc.

and S is the thermodynamic entropy.
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This	mathematical	apparatus	can	be	pitched	as	a	metric	
information	geometry	giving	probability.	The	less	the	
probability	of	a	fluctuation	between	two	thermodynamic	
states,	the	further	apart	they	are.	This	metric	was	originally	
envisioned	as	a	thermodynamic	metric,	but	a	number	of	
authors	connected	it	to	the	broader	context	of	information	
geometry	in	the	form	of	the	Fisher-Rao	information	geometry	
metric.	
	 	

A thermodynamic information metric results

�`2 = gµ⌫�xµ�x⌫ is a probability ”distance.”

Greater distance has a less probable fluctuation.

This is the entropy metric.
Weinhold (1975), Ruppeiner (1979)

Related to Fisher-Rao metric (1945).

Brody, Diósi, Dolan, Ingarden, Janyszek,
Johnston, Mrugała, Salamon
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The	metric	leads	directly	to	the	invariant	thermodynamic	Ricci	
curvature	scalar	R.	The	units	of	R	are	those	of	volume.	R	gives	
the	size	scale	of	mesoscopic	fluctuations.	Let	me	add	that	a	
Ricci	curvature	scalar	is	always	a	feature	of	the	Fisher-Rao	
metric.	However,	the	interpretation	of	R	is	not	generally	clear,	
a	priori.	The	interpretation	requires	additional	theory,	and	this	
is	offered	by	the	thermodynamic	formalism.	Unfortunately,	I	
will	not	have	time	in	this	talk	to	go	into	this	theory.	
	 	

The Ricci curvature scalar R follows

Metric leads to the curvature scalar R.

Thermodynamic R has units of volume.

R is always a feature of a Fisher-Rao metric.

Physical interpretation requires additional theory.

Ruppeiner (1983), Diósi and Lukáks(1985)
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The	Riemannian	curvature	scalar	is	a	signed	quantity.	I	use	the	
curvature	sign	convention	of	Weinberg,	in	which	the	two-
sphere	has	negative	curvature	R.	
	 	

R is a signed quantity

R < 0 R = 0 R > 0

R can be negative, zero, or positive.

I use Weinberg’s (1972) sign convention.
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Here	is	a	table	of	R	in	many	models.	Patterns	are	clearly	
evident.	For	models	where	interactions	between	molecules	are	
attractive,	the	curvature	is	negative.	Prominent	here	is	the	
Bose	gas,	as	well	as	all	of	the	typical	critical	point	models.	If	
interactions	between	molecules	are	repulsive,	the	curvature	is	
mostly	positive.	Prominent	here	is	the	Fermi	gas,	where	the	
atoms	repel	due	to	quantum	statistics.	For	models	with	weak	
interactions,	the	absolute	value	of	the	curvature	is	zero	or	
small.	For	example,	the	ideal	gas	has	curvature	zero.	R	diverges	
in	a	number	of	models,	either	at	critical	points	or	at	absolute	
zero.	
	 	

R has been calculated in many models
Model n d R sign |R| divergence
Ideal Bose gas 2 3 � T ! 0
Ising ferromagnet 2 1 � T ! 0
Critical regime 2 · · · � critical point
Mean-field theory 2 · · · � critical point
van der Waals (critical regime) 2 3 � critical point
Spherical model 2 3 � critical point
Ising on Bethe lattice 2 · · · � critical point
Ising on random graph 2 2 � critical point
q-deformed bosons 2 3 � critical line
Tonks gas 2 1 � |R| small
Ising antiferromagnet 2 1 � |R| small
Ideal paramagnet 2 · · · 0 |R| small
Ideal gas 2 3 0 |R| small
Multicomponent ideal gas > 2 3 + |R| small
Ideal gas paramagnet 3 3 + |R| small
Kagome Ising lattice 2 2 ± critical line
Takahashi gas 2 1 ± T ! 0
Gentile’s statistics 2 3 ± T ! 0
M-statistics 2 2, 3 ± T ! 0
Anyons 2 2 ± T ! 0
Potts model (q > 2) 2 1 ± T ! 0
Finite Ising ferromagnet 2 1 ± T ! 0
Ising-Heisenberg 2 1 ± T ! 0
q-deformed fermions 2 3 + T ! 0
Ideal Fermi gas 2 2, 3 + T ! 0
Ideal gas Fermi paramagnet 3 3 + T ! 0
Unitary thermodynamics 2 3 + T ! 0

n = number of independent thermodynamic variables, and d = spatial dimension
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A	number	of	authors	contributed	to	the	model	calculations	on	
the	previous	slide.	This	model	evaluation	was	a	group	project	
done	over	a	number	of	years.	
	 	

A number of authors made model calculations . . .

S. Bellucci D. Brody
J. Chance A. Dalafi-Rezaie
B. P. Dolan H. Hara
D. W. Hook W. Janke
H. Janyszek D. A. Johnston
K. Kaviani R. Kenna
R. P. K. C. Malmini P. Mausbach
H.-O. May B. Mirza
H. Mohammadzadeh R. Mrugała
J. Nulton T. Obata
H. Oshima A. Ritz
N. Rivier G. Ruppeiner
A. Sahay P. Salamon
T. Sarkar G. Sengupta
Z. Talaei M. R. Ubriaco
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To	repeat,	the	central	point	is	that	R	measures	interactions	
between	microscopic	elements,	atoms,	molecules,	or	spins.	The	
sign	of	R	is	negative,	positive,	or	zero	depending	on	the	
character	of	the	interactions.	
	 	

The sign of R characterizes interactions . . .

R < 0 for attractive interactions.

R > 0 for repulsive interactions.

R = 0 for the ideal gas (noninteracting).
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Calculations	in	a	number	of	cases	have	shown	that	R	diverges	
to	negative	infinity	at	the	critical	point.	Near	the	critical	point,	
R	is	proportional	to	the	correlation	length	ξ	raised	to	the	
power	of	the	spatial	dimensionality.	Asymptotically,	the	
proportionality	constant	between	R	and	the	correlation	volume	
has	been	found	to	be	exactly	negative	two,	a	value	obtained	
regardless	of	the	spatial	dimensionality,	or	even	whether	we	
compute	in	a	fluid	or	in	a	spin	system.	
	 	

. . . and |R| measures mesoscopic cluster size

R diverges at critical points (R ! �1).

|R| / ⇠d , with correlation length ⇠.

R = �2 ⇠d , asymptotically.
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I	now	start	a	sequence	of	brief	slides	sketching	results	that	
have	been	obtained	in	the	literature	for	R.	When	possible,	I	also	
indicate	the	corresponding	mesoscopic	structures	in	play	in	
each	scenario.	The	first	example	is	the	ideal	gas,	which	has	
identically	zero	R.	My	slide	indicates	this	with	a	path	along	a	
line	of	constant	molar	volume	v.	To	the	right,	I	indicate	a	
collection	of	randomly	placed	atoms	devoid	of	any	organized	
structure.	
	 	

(a) the ideal gas shows zero R

R = 0

v = constant

T

R
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The	rare-field	gas,	in	which	the	long-range	attractive	tail	of	the	
intermolecular	force	dominates,	shows	negative	R.	|R|1/3	is	on	
the	order	of	the	spacing	between	molecules.	This	volume	
marks	the	lower	limit	of	thermodynamic	validity.	Such	results	
are	evident	particularly	on	calculating	R	with	fit	fluid	equations	
of	state.	
	 	

(b) the rare-field gas shows small negative R

|R| ≈ v

v = constant

|R|1/3T

R
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A	liquid	could	result	from	compressing	a	gas	to	a	condensed,	
disorganized	state.	It	has	negative	R,	with	|R|	roughly	the	
volume	v	occupied	by	a	single	molecule.	
	 	

(c) the liquid shows small negative R

|R| ≈ v

v = constant

T

R

|R|1/3
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Compress	the	liquid	further,	and	we	transition	into	a	solid.	The	
solid	has	positive	R,	roughly	the	volume	v	occupied	by	a	single	
molecule.	Is	the	transition	gradual	or	is	there	a	jump	between	
R’s	with	opposite	sign?	Not	enough	work	has	been	done	here	to	
give	any	general	conclusion.	
	 	

(d) the solid phase shows small positive R

|R|1/3

v decreasing

T

R

R = 0

|R| ≈ v
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The	critical	point	has	the	molecules	aggregating	to	large	
correlated	groups	of	size	the	correlation	length,	which	is	given	
directly	by	R.	R	diverges	to	minus	infinity	on	approaching	the	
critical	point	from	any	direction,	shown	here	on	the	critical	
isochore	(T>Tc)	and	along	both	branches	of	the	coexistence	
curve	(T<Tc).	
	 	

(e) the critical point shows R ! �1

R → -∞

Tc

v = vc

T
R

|R|1/3
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The	coexisting	vapor	and	liquid	phases	have	the	same	values	of	
R.	The	fluctuating	droplets,	liquid	droplets	in	the	vapor,	and	
vapor	droplets	in	the	liquid,	are	the	same	sizes.	This	striking	
principle	persists	even	a	long	way	from	the	critical	point.	
	 	

(f) the coexistence curve has equal R’s in the phases

Tc

T
R

Rv = Rl

|R
v
|1/3

|R
l
|1/3
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One	can	envision	organized	solid-like	structures	with	R	>0,	
held	up	by	repulsive	forces	between	the	molecules,	and	held	
together	by	pressure	from	collisions	with	outside	molecules.	
Such	structures	have	been	proposed	in	the	vapor	phase	near	
the	critical	point.	
	 	

(g) the repulsive cluster, with R > 0, is logical

R > 0

v increasing

T

R |R| ≈ cluster size

|R|1/3
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The	ideal	Bose	gas	has	effectively	attractive	interactions	due	to	
quantum	statistics.	These	interactions	become	quite	dramatic	
at	absolute	zero,	where	R	diverges	to	negative	infinity.	
	 	

(h) the ideal Bose gas attracts

T
R

R → -∞

v = constant

George Ruppeiner (New College of Florida) Entropy fluctuations . . . Web 2019 21 / 30



	22	

	

	
	

The	ideal	Fermi	gas	has	effectively	repulsive	interactions	due	
to	quantum	statistics.	These	interactions	become	quite	
dramatic	at	absolute	zero	where	R	diverges	to	positive	infinity.	
	 	

(i) the ideal Fermi gas repels

v = constant

T

R R → +∞
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The	anyon	is	a	theoretical	particle	that	transitions	
continuously	from	Bose	to	Fermi.	R	likewise	transitions	from	
negative	to	positive.	
	 	

(j) the anyon transition from Bose to Fermi

v = constant

fermionic

bosonic

T

R

R = 0
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The	two-dimensional	ferromagnetic	Ising	model	has	R	going	to	
negative	infinity	at	the	critical	temperature,	fitting	the	general	
pattern	of	divergences	of	R	to	negative	infinity	at	critical	
points.	
	 	

(k) the 2D Ising critical point shows R ! �1

T

R

R → -∞

Tc ferromagnetic Ising spins

+ + + - - + +

- + + - - - -

- - + + - + -

+ + + - + - - 

- + + + + + -

+ + + + - - -

+ - + + + + +

H = 0

|R|1/2
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The	one-dimensional	ferromagnetic	Ising	model	has	R	going	to	
negative	infinity	at	absolute	zero,	which	is	the	critical	
temperature	in	one	dimension.	
	 	

(l) the 1D Ising critical point shifts to T ! 0

ferromagnetic Ising spins

R

R → -∞

H = 0 |R|

T
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The	one-dimensional	antiferromagnetic	Ising	chain	has	
negative	R	of	rough	order	of	the	lattice	constant.	It	thus	
resembles	the	liquid	in	sketch	(c).	One	might	have	expected	
more	the	solid	phase	in	sketch	(d),	but	this	did	not	obtain.	
Maybe	there	is	not	that	much	difference	between	these	cases.	
Perhaps	one	might	even	have	expected	the	critical	point	
behavior	in	sketch	(l),	but	this	is	definitely	not	in	play.	
	 	

(m) the 1D Ising antiferromagnet looks liquid-like

T

R

|R| ≈ lattice constant |R|

antiferromagnetic Ising spins
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Turn	now	to	some	black	hole	thermodynamic	cases.	Unlike	the	
fluid	and	spin	cases	presented	above,	there	is	absolutely	no	
consensus	in	the	Physics	community	what	the	microscopic	and	
mesoscopic	structures	might	be,	or	whether	this	question	even	
has	meaning.	But	my	opinion	is	that	if	there	is	
thermodynamics,	then	there	must	be	fluctuations,	and,	hence,	
microscopic	fluctuating	entities.	My	first	black	hole	example	is	
the	two-dimensional	BTZ	black	hole.	It	has	identically	zero	R,	
and	thus	appears	to	be	composed	of	noninteracting	
microscopic	constituents,	as	is	the	ideal	gas	in	sketch	(a).	
	 	

(n) the BTZ black hole looks like an ideal gas

T

R

J = constant

R = 0
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The	rotating	Kerr	black	hole,	with	angular	momentum	J,	has	an	
extremal	situation	where	the	spin	rate	is	maximized.	At	that	
maximum	spin,	the	black	hole	temperature	T	is	zero.	In	the	
extremal	limit,	R	goes	to	plus	infinity	in	a	similar	way	as	for	the	
ideal	Fermi	gas	in	sketch	(i).	This	suggests	that	the	
fundamental	microscopic	constituents	of	these	black	holes	are	
some	type	of	Fermi	particles.	
	 	

(o) the Kerr black hole resembles Fermi gas as T ! 0

J = constant

T

R
R → +∞
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The	RN-AdS	black	hole	is	charged	but	not	spinning.	It	sits	in	a	
background	space	with	constant	negative	Einstein	curvature	
scalar.	This	black	hole	has	a	phase	transition	at	a	non-zero	
temperature	qualitatively	similar	to	that	in	sketch	(e).	
	 	

(p) the RN-AdS black hole has a critical point

T

R

Tc

Q<Qc

Q>Qc

R → -∞
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In	conclusion,	the	thermodynamic	curvature	would	appear	to	
be	an	important	thermodynamic	property,	one	connecting	
macroscopic	thermodynamics	directly	to	interactions	between	
microscopic	constituents.	This	talk	is	based	on	too	many	
references	to	cite	here.	Some	of	these	references	are	in	
“Thermodynamic	curvature	and	black	holes,”	G.	Ruppeiner,	in	
“Breaking	of	Supersymmetry	and	Ultraviolet	Divergences	in	
Extended	Supergravity,”	Springer	Proceedings	in	Physics	153,	
179-203	(2014).	(arXiv:1309.0901).	Email	me	if	you	have	
questions.	

Conclusion: calculate R whenever you can!

R measures mesoscopic structures naturally.

Other thermodynamic functions can be useful, but
which “are right”?

R is invariant and universal.

R is always available!
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