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Abstract: Official protection can play a major role in the conservation of biodiversity and sustainable 
management of endangered species habitat. Bozin and Marakhil Forest in Kermanshah province of 
Iran covers 23,724 ha of semi-arid Zagros forests. It was designated as a protected habitat area for 
Eurasian roe deer (Capreolus capreolus) in 1999, a species that thrives on forest edge habitat. Using 
remote sensing data from 2001 and 2009, we evaluated the effects of this protected designation on 
forest area and structure at two spatial scales. We processed and classified Landsat images for the two 
dates covering the protected area and the adjacent unprotected areas for the broad scale analysis.  We 
classified IKONOS and GeoEye images of the two dates covering a part of protected and unprotected 
areas for fine scale analysis. Protection had a scale dependent influence on habitat availability and 
structure. A small difference due to protection at the fine scale was increased fractal dimension of 
forest patches as a measure of habitat complexity, likely due to reduced human impact. The official 
protection maintained habitat availability, contiguity, and complexity at the broad scale, probably at 
the expense of increasing human pressure on the surrounding unprotected areas. Given this scale 
dependency of protection effects on habitat amount and structure, the actual effects of protection 
would depend on the practical home range size and scale at which species use the habitats.  
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1. Introduction 

The efficiency and sustainability of protected areas for biodiversity conservation has been debated 
from many perspectives [1-3]. Gaston et al. (2008) did a synthetic review on this issue and identified 
several knowledge gaps, including the effect of protected areas on the restoration of biodiversity 
features, the relative ecological performance of protected areas, and interaction between populations 
within and outside protected areas.  Forest cover is one of the most important indicators of sustainable 
landscape management [4] since it shows the total amount of natural and socio-economical resources 
as well as habitat for forest-dependent species. However, detection of changes in forest cover is not 
enough per se, since management practices or protection may significantly change the habitat structure 
that is critical for endangered species maintenance and conservation.  

Landscape structure metrics have been demonstrated to be useful sustainability indicators for 
forested ecosystems, and forest spatial structure in particular has been identified as particularly 
valuable [5-9]. Of main interest here is the effect of protection on disturbance regime and landscape 
structure [10-11]. However the significance of these effects and structural patterns is strongly 
dependent on the scale of observation [7, 12-17]. Therefore it is necessary to investigate the effect of 
protection on habitat area and structure at different scales, and its consequences for sustainable 
conservation of focal species in a given socioeconomic context.  

In this study we use remotely sensed data at two scales, including both grain and extent, to evaluate 
the effects of eight years of protection on forest cover and landscape structure in a semi-arid 
Mediterranean landscape. We evaluate the efficiency of protection in relation to habitat requirements 
of roe deer (Capreolus capreolus). We hypothesize that the protected and unprotected areas form two 
different landscape types that might be discriminated using landscape metrics, but that these 
differences may not be the same at different scales. We suggest that these changes in landscape 
structure inside and outside of the protected area has considerable implications for sustainable species 
conservation and local community stewardship through removing land from human access. 
 

2. Methods 

2.1. Study area 

The Zagros forest region extends from the northwest of Iran to the southeast (Figure 1). It is semi-
arid with a continental climate, with average annual precipitation of ≈550 mm which varies between 
350 mm and ≈1000 mm [18]. The Bozin and Marakhil Forest is a protected area in the Kermanshah 
province of Iran, and covers 23,724 ha of semi-arid Zagros oak forests (Figure 1). The western border 
of the protected area is delineated by the Sirvan River which is also the Iran-Iraq border. It was 
designated as a protected area in 1999 to preserve habitat for Eurasian roe deer (Capreolus capreolus) 
which has been locally extinct in some other countries of the region such as Lebanon, Israel, Syria and 
Iraq since the beginning of 20th century, and in Jordan since the beginning of the 19th century [19]. 
Forests in the study area are used similarly to forests throughout the Zagros region, primarily for  
traditional activities such as livestock grazing and browsing, defoliation and disbranching of trees, 
cutting for fuel and construction, collecting fruits and oak acorns, conversion of forests to dry 
cultivation land, and utilization of forest products [18]. More recently, fire frequency has been 
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increased in both protected and surrounding unprotected areas due to human activity. In this study, 
we compare two typical semi-arid patchy forest landscapes of same soil and landforms, one after eight 
year of protection and the other which remained unprotected. Protection in Iran imposes formal legal 
restrictions on hunting, harvesting and other traditional usages, but enforcement can be sporadic at 
times. 

 

Figure 1. Location of the Bozin and Marakhil protected area in the Zagros forest region, 
western Iran. 

 
 

 
2.2. Delineation of the study area and scale of the study 
 

The extent of the protected area was digitized in a Geographic Information System (GIS; Figure 2). 
The data were obtained at two different scales and all analyses were conducted independently at the 
two scales. The Landsat-5 Thematic Mapper images of 2001 and 2009 covering the study area (WRS-
2, Path 168, and Row 36) were obtained from the U. S. Geological Survey portal [20] and used for a 
broad scale analysis. This broad scale analysis has a 30m grain size and ~ 6750000 ha extent that 
included the entire protected area and a 15 km unprotected buffer surrounding the protected area. This 
buffer was used to avoid problems associated with autocorrelation and directionality when calculating 
landscape metrics. The unprotected areas that were located in Iraq were clipped out of the analysis to 
avoid the bias associated by different socioeconomic conditions and national management approaches 
in the two countries. An IKONOS image covering some protected and unprotected areas in 2001, and 
two GeoEye images covering a part of the protected area and unprotected buffer in 2009 were obtained 
and used for the fine scale analysis (Figure 2). This fine scale analysis has a 1m grain size and ~16500 
ha extent.  
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Figure 2. Protected area, unprotected 15km buffer and the coverage of fine scale high 
resolution imagery. 

 
 

 
2.3. Image processing and classification  
 

We georectified the Landsat images based on the orthorectified images (of the same path and row) 
acquired from the global Landsat GeoCover archive [21] using a third order polynomial model and 
nearest neighbor resampling in the image-to-image registration to obtain the required spatial accuracy 
(RMSE< 15m). We applied radiometric correction to each image based on current radiometric 
calibration coefficients for Landsat MSS, TM, and ETM [22].  

We calculated spectral variables that have previously been found to be effective for land cover 
classification across semi-arid regions, including Normalized Difference Vegetation Index [23], and 
Soil Adjusted Vegetation Index [24]; and data transformations such as tasseled cap transformation 
[25]; and principal component analysis [26]. We included six topographic variables including 
elevation, slope, transformed aspect [27], Bolstad’s land form [28], and flow accumulation, assuming 
that the extreme topographic variation across the Zagros region strongly influences temperature and 
moisture gradients and hence land cover types. We obtained the topographic metrics from the 90 m 
Digital Elevation Model (DEM) acquired via NASA’s Shuttle Radar Topographic Mission [29]. In 
total, we calculated 33 predictor variables for the Landsat TM images in each year.  

We used the Random Forest (RF) algorithm [30] with a recent application in the classification of 
remotely sensed data [31-35] for the classification of Landsat images based on the spectral and 
topographic variables discussed above. We used high resolution images available on Google Earth as a 
reference for Landsat images. We classified the IKONOS and GeoEye images by density slicing of the 
Normalized Difference Vegetation Index (NDVI). Given the large amount of detail in these high 
resolution images, NDVI values were sufficient to successfully differentiate trees from other 
vegetation. We used ERDAS Imagine 2010 software [36] and ArcMap v.9.3 [37] for image processing 
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and GIS analyses. We used the Random Forest package [38] in the R statistical program [39] for the 
classification of Landsat images.  
 
2.4. Variable selection and statistical analysis 
  

All available 45 landscape metrics at the patch level were calculated in Fragstats [40].  Since the 
spatial pattern metrics are usually highly correlated [6, 41, 42], we used a multivariate factor analysis 
based on Principal Component Analysis (PCA) and Varimax rotation to reduce data dimensionality. 
The criterion for selecting the metrics was the loadings on the factors [41]. The normality tests of the 
selected metrics showed that none of them were normally distributed at either scale of the analysis, and 
could not be transformed to normal distributions using common transformation methods [43]. 
Additionally, the comparison of the two landscapes in this study is an example of pseudoreplication 
[44], and using statistical inference in these types of comparisons is likely to be biased. Since we 
compared landscape metrics at the patch level, each of the two protected and unprotected treatments 
have sufficient sample replication. We used the non-parametric Wilcoxon rank sum test [45] to 
compare the landscape metrics between protected and unprotected areas and through time. We applied 
factor analysis using SPSS statistics v.17 [46].   
 

3. Results and Discussion  

3.1. Variable selection 

A preliminary PCA of all 45 landscape metrics at the patch level showed significant relationships 
(P<0.001). We identified four factors based on Kaiser’s criterion [47]. The four factors explained 97% 
of the variation in the dataset. Metrics of patch extension including patch area (AREA) and radius of 
gyration (GYRATE) had the highest loadings on the first factor. Euclidean Nearest Neighbor distance 
(ENN) was the metric with prominent loading on the second factor. Contiguity index (CONTIG) and 
fractal dimension (FRAC) were the metrics with the highest loadings on the third and fourth factors 
respectively. Therefore, four independent patch level metrics AREA, ENN, CONTIG, and FRAC were 
selected to detect changes in patch extent, patch isolation, contiguity, and landscape complexity 
respectively, at both scales.  
 
3.2. Landscape structure analysis at broad scale 
 

The analysis of landscape structure metrics across space at the broad scale showed that the protected 
and unprotected areas did not show significant differences in the values of the forest patch level 
structural metrics at the beginning of the study period in 2001, except for ENN which was shorter for 
the protected areas (Table 1). The structural metrics with the exception of FRAC became significantly 
different between protected and unprotected areas in 2009. Forest patches in the protected areas were 
larger with higher extension, were less isolated, and more contiguous than the ones in the unprotected 
area in 2009 (Table 1). Both areas showed a comparable total habitat loss at the landscape scale 
(Figures 3a and 4a).  



 

 

7 
 

Table 1. Comparison between protected and unprotected areas at the broad scale in 2001 and 2009. 
Statistically significant p values are denoted in bold. P, U, and χ2 denote protected, unprotected, and 

Wilcoxon’s chi square respectively.  

2001 

Metric χ2 P value Medians 
P U 

AREA (ha) 2.44 0.1183 0.1584 0.1584 
ENN (m) 20.22 0.0000 56.2823 62.9256 
CONTIG 2.24 0.1344 0.0833 0.1667 
FRAC 2.68 0.1017 1.0160 1.0160 

2009 

Metric χ2 P value Medians 
P U 

AREA (ha) 5.83 0.0157 0.1575 0.0788 
ENN (m) 22.94 0.0000 56.1285 62.7536 
CONTIG 6.23 0.0126 0.0833 0.0000 
FRAC 2.60 0.1072 1.0000 1.0000 

 

Table 2. Comparison between the condition of the protected and unprotected areas from 2001 to 2009 
at the broad scale. Statistically significant p values are denoted in bold. χ2 denotes Wilcoxon’s chi 

square. 

Protected 

Metric χ2 P value Medians 
2001 2009 

AREA (ha) 82.24 0.0000 0.1584 0.1575 
ENN (m) 114.04 0.0000 56.2823 56.1285 
CONTIG 0.15 0.7033 0.0833 0.0833 
FRAC 0.07 0.7959 1.0160 1.0000 

Unprotected 

Metric χ2 P value Medians 
2001 2009 

AREA (ha) 1763.81 0.0000 0.1584 0.0788 
ENN (m) 864.48 0.0000 62.9256 62.7536 
CONTIG 136.55 0.0000 0.1667 0.0000 
FRAC 87.43 0.0000 1.0160 1.0000 

 

The analysis of the metrics across time showed that the protection did not have any significant 
effect on the landscape structure of the protected areas. Patch extension decreased from 2001 to 2009 
and consequently the ENN was shorter. Contiguity and complexity of the landscape did not change in 
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the protected area at this scale (Table 2). The unprotected area however showed a substantial decrease 
in patch extension, patch isolation, contiguity and fractal dimension. Fractal dimension has been 
reported to be a good measure of human impact [48-50]; the significant decrease in fractal dimension 
showed the trend of the landscape towards more simplified forest patterns due to human utilizations in 
unprotected areas at the broad scale (Table 2). This shows that protection was not able to halt habitat 
loss and fragmentation, but it kept the contiguity and complexity of the landscape in a stable state. The 
significant difference between protected and unprotected areas in 2009 (Table 1) is due to the high 
amount of fragmentation in the unprotected area and not to any improvement in the protected area. 
Protection probably causes more resource extraction pressure on the surrounding unprotected areas.    

 

Figure 3. Total forest cover change in the (a) broad scale, (b) fine scale  

 

 

 

 

 

 

 

3.3. Landscape structure analysis at fine scale 
 

The comparison of the selected metrics between the protected and unprotected areas at the fine scale 
in 2001 showed that the sites are structurally different at this scale in 2001 (Table 3).  It shows that the 
protected area contained less fragmented forest stands. With the exception of landscape complexity 
(which was lower for the protected area at this scale), the protected area seems to be structurally better 
than the unprotected area at this scale in 2001 (Table 3), even though no difference in structure was 
found at the broad scale in 2001 (Table 1). Higher patch extent and contiguity and lower fractal 
dimension is characteristic of the protected area compared to the unprotected area at the fine scale in 
2001 (Table 3). The same comparisons in 2009 showed that the protected area again had higher patch 
area and contiguity (Table 3), as well as an improvement of landscape complexity at the end of the 
study period. This was shown by non-significant difference in fractal dimension between two sites in 
2009 compared to its higher value for unprotected area in 2001 (Table 3). Most of the structural 
differences between the protected and unprotected areas already existed in 2001 and might not be due 
to protection, except for fractal dimension which increased in the protected area (Table 4) and 
decreased in the unprotected areas (Table 4). The protected area had lower fractal dimension in 2001, 
but it had the same value of fractal dimension as the unprotected area in 2009. The analysis of 
structural change from 2001 to 2009 showed that in both protected and unprotected areas, patch extent 
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and contiguity decreased, and ENN increased, from 2001 to 2009 (Table 4). Both protected and 
unprotected areas became significantly more fragmented through time with less habitat area. Although 
both habitat area (AREA) losses in protected and unprotected areas were statistically significant at this 
scale, the total habitat loss at the landscape scale showed that this change was more visible for 
unprotected area (Figures 3b and 4b). Protection resulted in more structurally complex landscapes 
displayed by changes in fractal dimension in both protected and unprotected areas (Tables 3 and 4) and 
that was a small effect at the fine scale. Given the ongoing socioeconomic conditions in the area and 
the dependence of the local communities on forest products, we would assume that physical protection 
is not being actively enforced and remains nominally effective. Although the effect of protection on 
habitat availability is more visible at the broad scale (Tables 1 and 2), it is at the expense of putting 
more pressure from local communities on the surrounding unprotected areas. 

 

Figure 4. View of changes in amount and structure of habitats at two spatial scales: (a) 
broad scale by Landsat imagery, (b) fine scale by IKONOS and GeoEye imagery. 
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Table 3. Comparison between protected and unprotected areas at the fine scale in 2001 and 2009. 
Statistically significant p values are denoted in bold. P, U, and χ2 denote protected, unprotected, and 

Wilcoxon’s chi square respectively.  

2001 

Metric χ2 P value Medians 
P U 

AREA (ha) 380.46 0.0000 0.0019 0.0018 
ENN (m) 140.98 0.0000 3.0000 3.0000 
CONTIG 672.46 0.0000 0.6778 0.6667 
FRAC 369.56 0.0000 1.1359 1.1429 

2009 

Metric χ2 P value Medians 
P U 

AREA (ha) 104.58 0.0000 0.0013 0.0011 
ENN (m) 927.75 0.0000 3.6056 3.6056 
CONTIG 178.23 0.0000 0.5873 0.5556 
FRAC 2.80 0.0941 1.1386 1.1386 

 

Table 4. Comparison between the condition of the protected and unprotected areas from 2001 to 2009 
at the fine scale. Statistically significant p values are denoted in bold. χ2 denotes Wilcoxon’s chi 

square. 

Protected 

Metric χ2 P value Medians 
2001 2009 

AREA (ha) 3436.29 0.0000 0.0019 0.0013 
ENN (m) 11661.02 0.0000 3.0000 3.6056 
CONTIG 4409.62 0.0000 0.6778 0.5873 
FRAC 567.87 0.0000 1.1359 1.1386 

Unprotected 

Metric χ2 P value Medians 
2001 2009 

AREA (ha) 6904.29 0.0000 0.0018 0.0011 
ENN (m) 6155.92 0.0000 3.0000 3.6056 
CONTIG 9479.24 0.0000 0.6667 0.5556 
FRAC 55.46 0.0000 1.1429 1.1386 

 
 
3.4. Structural metric change across scales 
 

 Habitat availability (in terms of forest patch area) decreased significantly in both protected and 
unprotected areas at both scales. ENN changed differently in response to the change to AREA at the 
two scales. At the broad scale ENN decreased as AREA increased. Although at the broad scale 
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fragmentation caused divisions in larger patches and resulted in shorter distances between remaining 
smaller patches, at the fine scale where the patches are single trees, the loss of a tree results in larger 
distances between remaining trees (ENN). Landscape contiguity significantly decreased in both areas 
at the fine scale (Table 3), but the effect was not significant when aggregated at the broad scale in the 
protected area, whereas it was significant in the unprotected area (Table 2). The landscapes became 
more structurally complex in the protected area and simpler in the unprotected area at fine scale. 
However, the aggregated effect at the broad scale was only significant in the unprotected area. 

 

4. Conclusions 

The efficiency of protection depends on its effects on habitat availability and structure, and the 
socioeconomic consequences at both scales. Our results show that protection did not significantly 
improve the resource availability (forests) at either scale studied, because patch area significantly 
decreased in both protected and unprotected forests at both scales. The difference already existed at the 
fine scale (Table 3). However, protection did maintain more forest when looking from a broad scale. 
Changes in habitat contiguity at the fine scale could not be attributed to protection effects because it 
changed similarly in protected and unprotected areas at this scale, but protection induced more 
complexity at this scale (Table 4). Protection also maintained habitat contiguity and complexity at the 
broad scale which were destroyed in unprotected areas. In total, given the patterns and intensity of 
local resource use, the effects of protection did act to buffer the human impacts and thus improved 
landscape complexity at the fine scale, and when the data are aggregated these effects are even more 
pronounced. The less fragmented landscape had less ecosystem variability [51], but in total it 
supported higher habitat availability or forest cover. Roe deer population in the area has been found to 
be heavily dependent upon areas with higher canopy cover [52], different than in Europe where higher 
populations of roe deer reside in open areas than in forests [53, 54]. However, the protection of 
unfragmented forest comes at the expense of higher utilization pressure on the surrounding unprotected 
areas, which may decrease β diversity [55]. Extending forest protection outside the park will require 
the cooperation of local communities and would result in more efficient and sustainable protection at 
both scales. 

Roe deer is a habitat generalist species with behavioral plasticity [56-59], although the scale at 
which roe deer perceive its environment is not clear. The disparate effects of protection at different 
scales  suggests that effective habitat protection will at least partially depend on details such as roe 
deer home range size and the scale at which the species responds to habitat change [60]. Relative to 
larger deer, roe deer should have small home ranges based on its energetic constraints and mobility. 
However, its home range size may also be influenced by other factors such as reproductive success and 
resource availability [61]. These factors are, in turn, dependent upon the ecological conditions in the 
area. This study contributes an important new question for the discussion regarding strict protected 
areas as a means of biodiversity, and its socioeconomic effects on local communities [62, 63]. If these 
areas are meant to protect particular species, the size and boundaries of the area must be influenced by 
the species’ life history, and the impact of protection on habitat outside of the area should be 
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considered. Increasing the intensity of resource use outside park boundaries may create barriers for 
dispersal, effectively creating habitat islands out of a park. 
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