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Abstract: The continuous quest for improving the performance of heat exchangers, together with 

evermore stringent volume and weight constraints, especially in enclosed applications (engines, 

electronic devices), stimulates the search for compact, high-performance units. One of the shapes 

that emerged from a vast body of research is the disc-shaped heat exchanger, in which the fluid to 

be heated/cooled flows through radial -often bifurcated- channels inside of a metallic disc. The disc 

in turn exchanges heat with the heat/cold source (the environment or another body). Several studies 

have been devoted to the identification of an “optimal shape” of the channels: most of them are 

based on prime principles, though numerical simulations abound as well. The present paper 

demonstrates that -for all engineering purposes- there is only one correct design procedure for such 

a heat exchanger, and that this procedure depends solely on the technical specifications (exchanged 

thermal power, materials, surface quality): the design in fact reduces to a zero-degree of freedom 

problem! The argument is described in detail, and it is shown that a proper application of the 

constraints completely identifies the shape, size and similarity indices of both the disc and the 

internal channels. Goal of this study is not that of “inventing” a novel heat exchanger design 

procedure, but that of demonstrating that -in this as in many similar cases- a straightforward 

application of prime principles and of diligent engineering rules may generate “optimal” designs. 

Of course, the resulting configurations may be a posteriori tested as to their performance, their 

irreversibility rates, their compliance with one or the other “techno-economical optimization 

methods”, but it is important to realize that they enjoy a sort of “embedded” optimality. 
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1. Introduction 

Consider the general structure of a Disc-Shaped Heat Exchanger element, DSHE (Figure 1). It 

consists of a disc of radius Rext (in the following referred to as “Rzb”) internally cooled (or heated: in 

the remaining of this paper for the sake of simplicity we shall refer only to internal cooling) by a series 

of circular channels that originate from an axial inlet A and develop radially outwards in a branching 

fashion, so that the cooling fluid is collected by a toroidal manifold placed on the external periphery 

of the disc. The channels may have different diameters and lengths. 

https://wef.sciforum.net/
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Figure 1. Sketch of a Disc-Shaped Heat Exchanger. 

One of the first problems designers must solve is the identification of the -possibly unique- set 

of lengths Lj and diameters dj of the channels. Another design issue is to determine whether a larger 

number of branchings (i.e., a “more dendritic” structure) leads to a performance improvement, and 

how to quantify the correlation between the number of branches and the DSHE performance. Finally, 

it must be investigated whether the branching angles βj have an influence on the overall heat 

exchange characteristics of the device. 

Historically, the problem has been approached by reformulating it in terms of “heat gain” of the 

cooling fluid versus “pressure drop” along the channels. A somewhat more sophisticated approach 

is that of calculating both the thermal entropy generation rate (due to the local temperature gradients 

in the fluid and in the disc) and its viscous counterpart (due to friction) and minimizing their sum: 

since the former is proportional to the HE efficiency and the latter to the pumping power, a sort of 

global optimum is reached that balances benefits and costs of the energy exchange. More recently, 

approaches have been proposed that introduce material costs considerations, either by applying 

Thermo-Economic principles or Exergy Analysis. 

All of these studies have identified and used one or more similarity parameters that can be 

directly linked to performance indicators: these “shape parameters” are the ratio of the diameters of 

successive branches, δj =dj+1/dj; the ratio of successive lengths, λj =Lj+1/Lj; the ratio of the diameter of the 

first branch to the disc radius, δ0 = d0/Rzb. Quite obviously, the more branches are etched inside of the 

disc, the more uniform the heat extraction from the solid material, and the better the performance: 

thus, both the initial number of “sectors” in which the disc is subdivided (first branches, z0) and the 

total number of branchings, zb, have an influence on the performance of the device. 

Investigators have taken different approaches to the solution: in general, global design optima 

have been identified by means of more or less “allometric” formulae (An allometric correlation is one 

in which the scaling relationship between some relevant attribute and a characteristic length of the 

problem depends on some power of the characteristic length itself. For example, in biology, it is 

established opinion that the metabolic rate depends on the “body size” (i.e., on the cube of some 

characteristic body length)) that define δj the and/or the λj for a given δ0. Only a few studies 

investigate the influence of the number of branchings. The few numerical studies available are 

usually based on a pre-assigned initial choice of z0 and take advantage of the circumferential 

symmetry of the problem to simulate only a sector spanning 2π/z0 radians (Figure 2). 

A 

R 
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Figure 2. “Typical” CFD of a DSHE [1]. 

The most popular and comprehensive theoretical model is Bejan’s Constructal Theory (CT in the 

following), based on a clever generalization of an “optimal ratio” derived over a century ago (1903–

1917) by the Swiss physiologist (and future Nobel laureate) Walter Rudolf Hess [2,3] for a model of 

blood flow in arterioles. The same result was “rediscovered” by the American physiologist Cecil 

Dunmore Murray in 1926 [4–6], and the correlation is since referred to as the “Hess-Murray law”. 

The method was innovative for the times: under the assumption that blood or lymph circulation in 

living organisms is governed by a “work minimization” principle, Hess and Murray proved that -

under certain conditions- there exists an “optimal branching ratio” of 𝛿 =
d𝑖+1

d𝑖
=

1

√2
3 = 0.7937 

between the diameters of two successive branchings. In spite of the poor agreement between the 

dictates of the H-M law and both experimental and numerical results (The H-M law underwent 

extensive theoretical and experimental reassessment in the second half of the 20th century, and the 

results indicate that the law is sufficiently accurate for the smallest vessels (d of the order of a 

millimeter) but fails for the larger ones (like arteries) [7–11]; moreover, it cannot be successfully 

extended to turbulent flows. Recent comparisons with numerical investigations of branched flows 

led to similar conclusions. See [12] for a review.), this “cubic root of 2” correlation was successfully 

reformulated and extended, resulting in “a general theory of material and energy transport” [13–17], 

Bejan’s Constructal Theory (“CT” in the following). In spite of its great success [18–22], CT does not 

really provide a satisfactory answer to the problem of choosing the initial number of sectors in which 

the disc must be divided (z0), the total number of branchings (zb) and has shown no clear advantage 

in terms of the “optimality” of its design (For instance, it has been demonstrated that CT works well 

only as long the flow remains laminar [23,24]. Furthermore, it does not address several practical 

design points, like the channels wall roughness, the viscous losses at each split, etc. And, as will be 

shown in the following, neither produces DSHE “optimal geometries”.) [7–10,25,26]. Some of the 

latest works in CT actually seem to disregard some phenomenological sides of the problems [18,27,28] 

This paper presents a description and a detailed discussion of a completely feasible, realistic and 

rational engineering procedure for the design of a disc-shaped HE. The procedure rests on the 

rigorous application of thermo-fluiddynamic principles and on a careful analysis of the implications 

of the selected topology (z0, zb) on the global device performance. Section 2 presents a topological 

description of the disc, Section 3 demonstrates that a physically correct design procedure leads to an 

under-specified problem (more variables than equations), and Section 4 shows how the imposition 

of a correct set of constraints can make the problem well-posed. Section 5 provides two examples of 

the advantages of a practical application of the procedure. 
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2. The Physiology of a Disc Heat Exchanger as a Function of Its Operational Mode 

As stated above, the relevant topological parameters of DSHE are: 

i -  the ratio of the diameters of successive branches, δj=dj+1/dj; 

ii -  the ratio of successive lengths, λj=Lj+1/Lj;  

iii -  the shape ratio defined as the ratio of the diameter of the first branch to the disc radius, δ0=d0/R; 

iv -  the initial number of “sectors” in which the disc is subdivided, z0; 

v -  the total number of branchings, zb. 

The above parameters define the shape of the DSHE: its size depends obviously on the design 

specifications. There are several possible applications for a DSHE, but they can be reduced to a single 

fundamental type of operation. For the sake of simplicity, we shall consider here the case in which 

the fluid flowing in the channels cools the disc (i.e., from the point of view of the fluid, the DSHE is 

a heater). As shown in Figure 3, the cooling fluid flows through the disc’s internal channels, and the 

hot source is either the surroundings (via convection on the DSHE external surfaces, Figure 3a), 

surface heating by conduction or electrical (Figure 3b), or surface heating on one side and convection 

cooling on the other side (Figure 3c). In all three configurations, the coolant absorbs heat from the 

bulk material of the disc, which in turn receives a continuous heat influx on one or both of its surfaces. 

   

(a)—Convection both sides (b) Conduction both sides 
(c)—Conduction and 

convection 

Figure 3. Fundamental modes of operation of a DSHE (here, as a heater). 

For a DSHE-heater, a suitable set of specifications includes: 

a) The thermal flux qin the DSHE receives by conduction or electrical input -if any; 

b) The inlet and outlet coolant temperatures Tin and Tout; 

c) The final ΔT between the disc and the fluid: TD-Tout; 

d) The average temperature Text of the immediate surroundings; 

e) The density ρf, specific heat cp,f, viscosity μf of the coolant; 

f) The density ρD and specific heat cp,D of the disc material; 

g) An average heat transfer coefficient for the convection on the outside surface of the disc, hext -if 

present. 

The net heat input Qdes depends on the type of operation, and the respective formulae are 

provided in Table 1. Once the net heat input Qdes is known, the coolant mass flowrate can be calculated 

from the global energy balance 

𝑚𝑖𝑛 =
𝑄𝑑𝑒𝑠

𝜂𝐷𝑆𝐻𝐸𝑐𝑝(𝑇𝑜𝑢𝑡−𝑇𝑖𝑛)
  (1) 

where ηDSHE is as yet unknown, and must be assumed as a first trial value (it can be refined at a later 

design stage, or estimated on the basis of semi-empirical charts). Since the numerical value of ηDSHE is 

inessential for the design procedure outlined here, a 90% efficiency will be assumed in the remaining 

of the calculations (The DSHE efficiency depends in fact mainly on the ratio s/R: the higher this ratio, 

the higher the convection losses on the disc peripheral surface. This dependence is not considered in 

this study.). 
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Table 1. Definition of the design DSHE thermal load. 

Type of Operation (Heater) 
Needed Design 

Specifications 
Qdes 

Heat input by convection on both sides hext, Text, TD 𝑄𝑑𝑒𝑠 = 2𝜋ℎ𝑒𝑥𝑡𝑅2∆𝑇𝐷 

Electrical or conduction heating on both sides qin, sD, kD 𝑄𝑑𝑒𝑠 = 2𝜋𝑞𝑖𝑛𝑅2 

Electrical or conduction heating on one surface, 

cooling by free convection on the opposite one 
hext, Text, TD, qin, sD, kD 

𝑄𝑑𝑒𝑠

= 2𝜋𝑅2(𝑞𝑖𝑛

− ℎ𝑒𝑥𝑡∆𝑇𝐷) 

 

From Equation (1) and Table 1 we see that the required mass flowrate of coolant is proportional 

to the square of disc radius R. If the former is specified by process requirements, then R has a unique 

value (Equation 2a). Alternatively, if R is dictated by space requirements, the mass flowrate of coolant 

is given by Equation 2b:  

𝑅 = (
𝜂𝐷𝑆𝐻𝐸𝑚𝑓𝑐𝑝(𝑇𝑜𝑢𝑡−𝑇𝑖𝑛)

𝐹𝐷𝑆𝐻𝐸
)

0.5

  (2a) 

𝑚𝑓 =
𝐹𝐷𝑆𝐻𝐸

𝜂𝐷𝑆𝐻𝐸𝑐𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)
R2 (3b) 

with 𝐹𝐷𝑆𝐻𝐸 = 2𝜋ℎ𝑒𝑥𝑡∆𝑇𝐷 , 2𝜋𝑞𝑖𝑛  or 2𝜋(𝑞𝑖𝑛 − ℎ𝑒𝑥𝑡∆𝑇𝐷). 

Notice that when the above formulae are used for cases (a) and (c) their results are approximate, 

because the disc is likely to have a radially variable surface temperature, meaning that ΔTD is not a 

constant but a function of r: If more accuracy is required, the value of R can be calculated iteratively 

using the final results of the procedure specified below. 

A designer would in general select the range of Reynolds number for the inlet flow. This choice 

is guided by two fundamental knowledge bits in heat transfer: the Nusselt number in internal 

channels grows approximately with the Re1/3, while the pressure drop in the channels grows with 

Re2. Therefore it is advisable to select Re in the vicinity of the transition (where the friction factor is 

lowest) but as high as possible (to increase Nu). Once Rein is specified: 

𝑑𝑖𝑛 =
4𝑚𝑖𝑛

𝜋𝜇𝑅𝑒𝑖𝑛

 
(3) 

The above equations provide the designer with a tentative size R of the disc, the diameter din of 

the inlet tube and the required coolant mass flowrate. On this basis, an “intrinsically optimal” (The 

claim for optimality is set within quotes because no optimization proper is performed when applying 

the proposed design procedure. Only fluid-thermodynamic constraint are imposed (the constancy of 

Re and the Graetz assumption, see below), and the optimal solution arises simply out of simmetry 

and of the geometric features of the branchings.) design procedure is described in the next section.  

3. The Correct Design Procedure Leads to an Underspecified Problem 

The first design step is to calculate the diameter of the first branch. To do this, the designer must 

assign the number of sectors, z0, in which the disc is divided: this choice is obviously arbitrary, and it 

may depend on technological issues. Assuming Rein = Re0: 

𝑑0 =
4𝑚𝑖𝑛

𝑧0𝜋𝜇𝑅𝑒0
  (4) 

Now, the designer must specify the total number of branchings, zb. This choice is also arbitrary, 

but an obvious consideration is that the more branchings, the more outlet points there will be on the 

disc periphery, the more uniform the disc temperature will be and the most effective the cooling. In 

practice, this choice is limited by technological considerations about the minimum feasible diameter 

of the smallest branches (see below). Once zb has been selected, the configuration of the disc is 

schematically represented in Figure 4. 
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Figure 4. DSHE nomenclature (here, z0=3, 0=60°). 

For a given surface quality (that depends on material- and technological considerations), the 

internal coefficient of heat transfer in each channel depends on the Nusselt number that in turn is a 

(non-linearly growing) function of the Reynolds number: for the generic j-th branch: 

𝑁𝑢𝑗 =
ℎ𝑗𝑑𝑗

𝑘
= 𝑓(𝑅𝑒, 𝑃𝑟)  (5) 

Since it is obviously convenient to have as high a Nuj as possible, a good design choice is to 

arrange the slenderness dj/Lj of the channels in such a way that the flow in all of the j-th branches is 

within the respective Graetz entry lengths (Figure 5): in other words, Lj = κgdj, with κg arbitrarily 

chosen in the shaded portion of the graph of Figure 5.  

 

Figure 5. Nusselt number vs. Graetz number (adapted from [28]). 

On the other hand, the friction losses are -under the posited assumptions- also a growing 

function of Re: 
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∆𝑝𝑗

𝐿𝑗
= 𝑓(𝑅𝑒)  (6) 

So that the design choice poses the well known dilemma of the HE designer: higher pressure 

losses vs higher heat transfer coefficient. Previous theoretical work on bifurcated structures [29,30] 

suggests to impose Rej = Re0, which leads to:  

𝛿𝑗 = 1/2 (7) 

Thus, the diameter of the internal channels halves at every new split: this is the reason for which 

zb has an upper bound, posed both by Equation (6) and by possible technological limitations on the 

attainable surface roughness. For a given Graetz ratio (For circular tubes, The Graetz entry length 

varies between 10 and 15 diameters (κ = 7  15), depending on the boundary conditions on the tube 

wall and the flow structure. In most practical applications, a value κg  8−10 is satisfactory, see Section 

5 below.): 

𝐿𝑗 = 𝜅𝑔𝑑𝑗 = 𝜅𝑔𝑑0𝛿𝑗 and 𝐿𝑗+1 =
𝐿𝑗

2
⁄  (8) 

with the geometric parameters thus defined, from simple trigonometric manipulations it follows that 

the radii of the zb circumferences identified by each splitting level are given by a recursive formula: 

𝑅𝑧𝑏
= 𝑅;      R𝑗−1 = R𝑗 cos(𝛾𝑗) + 𝜅𝑔𝑑0𝛿𝑗 cos(𝛽𝑗)      (9) 

A graphical representation for the structures defined by Equation (9) is provided in Figure 6. 

Equation (9) solves the problem, because Rzb and d0 are known (Equations 2 and 4), but it contains zb 

unknowns, namely, the splitting angles βj. To close the problem, zb−1 auxiliary conditions must be 

specified. 

 

Figure 6. Identification of the radii of successive branchings (here, z0=3). 

4. The Proper Constraints 

Once the initial number of branches (level 0), z0, and the total number of branchings zb are 

specified, a series of geometric constraints can be derived that completely defines the configuration 

by providing an equation for each of the j. The line of reasoning is as follows: the circular arc 𝐴�̂� at 

the external radius Rzb defined by zb will contain (Figure 6) 2zb terminal points, each one being the 

outlet of a single channel. For all of the terminal points on the circumference to be equispaced, the 

central angle zb spanned by two adjacent terminal points C,D (with 𝐶�̂� = 𝐸�̂�) must be equal to 
𝜋

𝑧02(𝑧𝑏−1). Then by simple trigonometric considerations, and making use of Equations (7) and (8): 
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cos(𝛽1) =

𝑅1(1−cos(𝛾1)

𝜅𝑔𝑑0
−1 

𝛿
  

cos(𝛽2) =
𝑅2 cos(𝛾2) − 𝑅1

𝜅𝑔𝑑0𝛿2
 

…………………… 

cos(𝛽𝑗) =
𝑅𝑗+1 cos(𝛾𝑗+1) − 𝑅𝑗

𝜅𝑔𝑑0𝛿𝑗+1
 

…………………… 

cos(𝛽𝑧𝑏
) =

𝑅𝑧𝑏
cos(𝛾𝑧𝑏

) − 𝑅𝑧𝑏−1

𝜅𝑔𝑑0𝛿𝑧𝑏+1
 

(10) 

The set (10) contains zb equations, that together with the second Equation in (9) and Equation (2) 

make the problem position complete. Consider that the angles 0…j …zb are given by the recursive 

formula  

𝛾𝑗 =
𝜋

2(𝑗−1)𝑧0

 (11) 

5. Examples of Application 

To demonstrate the usefulness of the above procedure, two samples of DSHE are critically 

examined in this section. Both are real applications, actually built in different years by different teams 

in one of the Thermal Sciences laboratories of the University Roma Sapienza. Independently from 

one other, both configurations were “optimized” according to two different criteria: our goal here is 

to assess whether these configurations are indeed optimal, and in what sense. 

5.1. Comparison of Possible Dshe Configurations for an Oil Cooler 

In this application [31] the dshe is used as an oil cooler: cold oil (iso viscosity class 46) enters the 

disc from the axis (Figure 7) and is heated as it flows through the internal channels. The al-mn disc is 

subjected to a uniform heat flux on its bottom surface, the upper one being insulated. The case 

specifications are listed in Table 1. 

Table 1. An Al/Mn alloy disc shaped oil heater. 

Disc radius, m 0.075 Oil mass flowrate, kg/s 2.17 * 10−3 

Disc thickness, m 0.015 Oil density at inlet, kg/m3 920 

Disc conductivity k, W/(mK) 190 Oil viscosity, νoil,323K, m2/s 6.7 * 10−5 

Texternal AIR, K 293 Toil,in, K 301 

External air viscosity νair, 

m2/s 
1.56 * 10−5 Toil,out, K 349 
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Figure 7. The DSHE described in [31]. 

The above device has been built and tested [31]. However, application of the procedure 

described in the previous sections demonstrates that: 

a) The 3 branches at level 0 are far too short, and therefore the temperature of the portion of the 

disc within the radius R0 (refer to Figure 6) is excessively high (the heat exchange area z0πd0L0 is 

too small, even if the Nu0 is rather high); 

b) Since the branches at levels 1 and 2 do not respect the constant-Re prescription (𝛿 = √2/2, i.e., 

constant velocity in successive branches), there is a disuniformity in the heat transfer (and 

therefore in the disc bulk temperature) between R1 and R2; 

c) The κg is not the same in branches 1 and 2, and this adds up to the non-constant Re effect, 

increasing the disuniformity in the disc body. 

5.2. Selection of the DSHE Configuration for the Cooling of an Electronic Chip 

In this application [1] the DSHE is made of an Al-alloy and serves as the cooling unit of an 

electronic chip. It receives a constant heat flux (14W) on its upper external surfaces, and it must be 

conservatively designed in such a way that its external temperature never exceeds 350K when the 

disc lower external surface is insulated. The cooling air from a fan enters the disc from the axis (Figure 

8) and flows through three sectors of equal amplitude (z0 = 3), each shaped as a single split (zb = 2). 

Design specifications are listed in Table 2. 

   

Figure 8. Ultra-micro DSHE: Results of a RANS CFD simulation (adapted from [5]. 
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Table 2. An air-cooled ultra-micro DSHE. 

Disc radius, m 0.015 Air mass flowrate, kg/s 1.27 * 10−4 

Disc thickness, m 0.0014 Air density at inlet, kg/m3 1.157 

Disc conductivity k, W/(mK) 120 Air viscosity νair,298, m2/s 1.56 * 10−5 

External h.t. coefficient h, W/(m2K) 30 Tair,in, K 298 

Texternal air, K 293 Tair,out, K 324 

The results of the CFD simulation show that: 

a) The level 0 branch is too short: the flow is not completely developed, and the Nu is high, but, as 

in the case examined in Section 5.1 above, the heat transfer is not optimal (the portion of disc 

within the circle R0 is too hot); 

b) The branches at level 1 are, on the contrary, too long, and the flow becomes fully developed 

towards the end of the channels, lowering the overall Nu1; 

c) In spite of the above shortcomings, the temperature of the disc is approximately constant, 

validating the assumption made in Section 2 as to the external convection loss. 

6. Conclusions 

A simple procedure for the design of a disc-shaped heat exchanger with internal bifurcated 

channels is presented and discussed. The goal of this exercise is to show that, while the study of the 

onset and operation of bifurcated structures in nature requires accurate considerations of optimal 

energy (exergy) use ratios, when it comes to engineered devices it is not always necessary to “mimic 

nature”, as many Authors (including the present one!) have repeatedly stated. Diligent engineering 

considerations, and a small number of prime principles in fluid- and thermodynamics suffice to 

concoct a sufficiently accurate preliminary design that is as “optimal” as needed. This happens by no 

chance: in the case of heat exchanger design, examined in this work, the specifications are quite 

stringent, and if additional symmetries are imposed by the selection of the device shape, the “design 

degrees of freedom” drop to zero. This does not mean that a design activity is devoid of creativity: in 

fact, as shown here, some of such “creativity” is naturally embedded in engineering choices that an 

expert designer deems “natural”, and that are instead the result of an engineering culture that is 

perceived as implicit in the designer’s reasoning. 
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