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Abstract: The State-of-Charge (SOC) real-time estimation plays an essential role in effective energy 

management. This paper proposes the use of an Artificial Neural Network (ANN) to design a state 

of charge estimator for a Graphite/LiCoO2 lithium-ion battery pack. The software MATLAB was 

used to develop and test several network configurations to find the ideal weights to perform the 

ANN. Results demonstrate that the Mean Squared Error (MSE) achieved rendered the ANN as an 

effective technique. Thus, it predicted the battery bank’s SOC values with accuracy using only 

voltage, current, and charge/discharge time as input. 
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1. Introduction 

Renewable energy generation is taking over the world scenario since this process is clean and 

does not pollute the environment. Batteries are one of the most cost-effective energy storage 

technologies available, with energy stored electrochemically [1]. Lithium-ion batteries are promising 

from the technical point of view since they have high round-trip efficiency (RTE) (≥90%) and long 

cycle life with high depth of discharge (DoD) [2]. 

Already commercial and mature for consumer electronic applications, lithium-ion is being 

positioned as the leading technology platform for plug-in hybrid electric vehicles (PHEVs) and all-

electric vehicles [3]. They are also heavily used in large facilities to support energy storage, load-

leveling, and frequency regulation in the context of smart grids [4]. 

Many known issues with lithium-ion batteries, such as performance decay, increased 

maintenance costs, accelerated aging, catastrophic device failure, and even hazardous incidents were 

associated with faulty State of Charge (SOC) estimation [5,6]. Therefore, a model that formulates the 

degradation process is critical to obtain a reliable SOC, ensuring safety during the process. 

The definition of SOC is the percentage of the remaining load relative to the maximum capacity 

of the battery [7]. The most used method for directly evaluating the battery pack SOC from 

measurable variables such as current and voltage is namely Coulomb Counting technique [8]. This 

method depends on the integration of the charge/discharge current values. However, any minimal 

error will accumulate over time due to the integration factor [9], and this is the reason why this 

technique is susceptible to errors. 

Advanced algorithms must be developed to predict the SOC of lithium-ion batteries accurately 

and effectively. The use of Artificial Neural Network (ANN) can provide SOC estimation under any 

condition, therefore, it also requires large data storage size to save the trained data [10]. In this paper, 
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a battery model is built using ANN to predict the SOC of a battery bank provided by the Center for 

Advanced Life Cycle Engineering (CALCE) at the University of Maryland supported by the National 

Science Foundation [11]. This prediction depends directly on the current, voltage, and 

charge/discharge time. An essential characteristic of this system is that these inputs do not include 

the previous SOC level, which makes its estimation more robust. 

Reference [12] proposed an SOC estimation approach for lithium-ion batteries based on coulomb 

counting. The SOC estimation could be more accurate by taking account the capacity degradation 

and the current measuring error. The proposed model presented a SOC estimation error less than 

1.905%, when taking account the current measuring error. This number was essentially caused by 

current integration, source of an inaccurate current measurement of the charging/discharging cycles 

resulting in misjudgment of the full capacity. 

Reference [13] used the extended Kalman filter method based on a Randles model to estimate 

the SOC of a Lithium-ion cell (LiFePO4) and reached a maximum error of estimation of 1.19%. Each 

parameter of the model was considered as constant and calculated as the average of the measure 

values at different SoCs and a fixed temperature of 25 °C. 

Several relevant contributions by different researchers appeared in the literature using artificial 

neural networks to predict the SOC of a lithium-ion battery pack. It is possible to find researches that 

achieved 2.6% of Mean Square Error (MSE) error [6], others about 1% [14,15], and some authors that 

reached e-04 MSE [16]. Thus, the purpose of this work is to decrease these numbers further. 

The paper is organized as follows: Section I provides a background and overview of the article. 

Section II goes over the fundamental theories used to create this paper. Section III is then followed 

by the design and implementation of the Neural Network. Section IV presents the results obtained. 

Lastly, section V includes the conclusions and recommendations for future work. 

2. Theoretical Framework 

In this section, the theoretical bases of this article will be presented and discussed. 

2.1. State of Charge 

SOC is the percentage of the maximum possible charge in the battery [17]. In order to represent 

the SOC of a lithium-ion in MATLAB, the capacity is typically converted as follows in Equation (1): 

SOC (t) =  
𝐶(𝑡)

𝐶𝑇𝑜𝑡𝑎𝑙
 ×  100 (1) 

where SOC (t) [%] is the battery SOC at time t, C(t) [ampere.hour] is the capacity at time t, and Ctotal 

[ampere.hour] is the total capacity of the battery. The lithium-ion battery pack was cycled between 

20%–80% of the SOC in 50 cycles of charge/discharge and is represented in Figure 1. 
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Figure 1. SOC and the number of cycles of the battery pack. 

2.2. Artificial Neural Network 

ANN is a computational model formed by a set of individual processing units, the artificial 

neurons, interconnected by weights that can be modified according to the quality parameters that 

evaluate the proximity between the required response and the one obtained [18]. ANNs are universal 

approximators that can model any nonlinear function with desired accuracies [19]. The networks are 

arranged in layers, with the first layer taking in inputs and the last layer producing outputs. The 

middle layers have no connection with the external world, and that is why they are called hidden 

layers [20]. The artificial neurons are the central element of an ANN because they are responsible for 

connecting each layer [21]. The model of a neuron is illustrated in Figure 2. 

 

Figure 2. Model of a neuron. 

The input signals vector 𝑋 ≔ [𝑥1, 𝑥2, … , 𝑥𝑛]𝑡 , n ∈  𝑵 = [1, |𝑋|], the neurons synaptic weights 

𝑊𝑘 ≔ [𝑊𝑘1, 𝑊𝑘2, … , 𝑊𝑘𝑛]𝑡 , n ∈  𝑵 = [1, |𝑋|],  𝑢𝑘  is the weight’s multiplication response with the 

input signals, 𝑏𝑘  is the bias which is an external parameter of the neuron, 𝑓(. ) is the activation 

function and 𝑦𝑘  is the output response of the neuron. 

A back-propagation algorithm based on experimental results is used to train the network. The 

multiple inputs are applied from previously recorded data to the input layer, with each one 

multiplied by a weight and the product summed. Then, this summation passes through a sigmoid 

function, also named as the activation function. The algorithm updates the network weights in such 

a way that the MSE in the network’s result is minimized. 

2.3. Perfomance Metrics 

In this paper, two errors will be taken into account for the performance metrics. The MSE and 

the percentage average of all errors. Equation (2) demonstrates the calculation of MSE: 

MSE =   
1

𝑛
 ∑  (𝑅𝑒𝑎𝑙 𝑆𝑂𝐶𝑖

𝑛

𝑖=1

− 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑂𝐶𝑖)

2

 (2) 

where 𝑛 is the total number of samples and 𝑖 is the current position of the vector. The Real SOC is 

obtained through the input data, and the Estimated SOC is the output of the ANN. 

The percentage average of all errors was calculated to quantify even more the results. The vector 

containing the absolute difference between the actual output value and the estimated output value 

was traversed so that the error percentage could be calculated. Taking this into consideration, the 

average of this vector was made. The formula of the error used is in Equation (3): 

Error = Mean |
𝑅𝑒𝑎𝑙 𝑆𝑂𝐶 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑂𝐶

𝑅𝑒𝑎𝑙 𝑆𝑂𝐶 𝑜𝑟 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑂𝐶
𝑥100| (3) 

where the higher number defines its dividend. 
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2.4. Methodology 

Figure 3 shows the flow chart and the methodology used in this work, starting with importing 

and processing the data, designing and training the neural network, arriving at MSE calculation and 

validation of the prediction. 

 

Figure 3. Predicting model for SOC based on neural network. 

3. Design of the Artificial Neural Network 

All steps taken to implement the neural network are described here: from data acquisition 

through input pre-processing to network topology choice and training. 

3.1. Data Acquisition and Data Pre-Processing 

The input data consists of window sequences of load data extracted from the battery bank 

provided by the Center for Advanced Life Cycle Engineering (CALCE) at the University of 

Maryland—EUA [10]. The files contain the test time in seconds, the cell current in ampere, the cell 

terminal voltage in volts, and the cumulative charge/discharge capacity of the cell in Ampere-hour. 

The lithium-ion battery pack was tested under 20%–80% of the SOC condition C/2 rate in 50 cycles of 

charge/discharge at room temperature (25 ± 2 °C). The cell chemistry used was the Graphite/LiCoO2 

with a 1500 mAh capacity rating. 

The data inputs must be processed to obtain a satisfactory ANN. The inputs were normalized 

and randomized to be separated into three sections: Training, Validation, and Test. The data in each 

section is different from another. Table 1 shows the quantitative data for each step. 
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Table 1. Data used for training and training processes validation and testing. 

Database Total of Samples 

Training 61,971 

Validation 30,985 

Test 30,985 

3.2. Network Topology 

The ANN topology chosen was the Multi-Layer Perceptron (MLP) network. For the 

implementation of the proposed model, the MATLAB software was used. The data set to be used as 

input and output parameters by the neural network are defined below. The structure of the neural 

network is represented in Figure 4, and each circle is corresponding to a neuron, as discussed in 

Chapter II. The input parameters are: 

 Time of charge/discharge; 

 Current; 

 Voltage. 

The output parameter is: 

 Capacity (SOC). 

 

Figure 4. Predicting model for SOC based on neural network. 

The amount that the weights are updated during training it’s called “learning rate.” The 

proposed network was submitted to training, with a learning rate of ŋ = 0.001. In order to improve 

the process, the maximum number of validation failures criteria was defined as “5”. If the ANN 

reaches this consecutive number of errors, the training is stopped. After testing several network 

configurations, the most suitable characteristics are described in Table 2. 

Table 2. ANN Parameters. 

Characteristics ANN 

Training Function Levenberg-Marquardt 

Adapting Learning Function Gradient Descent 

Performance Function MSE 

Number of layers 3 

Number of neurons in layer 1 18 

Number of neurons in layer 2 10 

Transfer function of layer 1, 2 and output layer Hyperbolic Tangent Sigmoid 
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3.3. Network Training 

The network was trained with 50% of the data, validated and tested with another 50%. The initial 

weights are given randomly, and trial and error methods determine the sizes of hidden layers. The 

validation error target was defined as MSE = 1, and once the MSE of the neural network is equal or 

less than the error target, the ANN is approved. 

The ANN was trained with voltage, current and time as inputs parameters in order to predict 

the natural degradation of the battery over the 50 cycles. 

The ANN training achieved an MSE of approximately 3.11 × 10−6 and was considered satisfactory 

as the ANN’training performance and ANN’training state show, respectively Figure 5 and Figure 6. 

As it is possible to identify in the two figures, the maximum number of training in the network was 

173 Epochs due to the limit of 5 validation checks inserted. When the network reaches this limit, it 

stops training. This is an ideal number as it demonstrates that the network is not specialized in the 

set of tests, avoiding over-fitting (a phenomenon that happens when a network becomes an expert in 

the training set). 

After having finished the net training, the weights were saved so that the network could estimate 

the SOC of the charge/discharge cycles according to the given inputs. 

 

Figure 5. ANN training performance. 
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Figure 6. ANN training state. 

4. Design of the Artificial Neural Network 

After the training phase, model validation was performed comparing the estimated results and 

the real database. Figure 7 shows that the ANN is accurate enough, achieving an MSE equivalent to 

1.57 × 10−6, and obtaining an approximate hit ratio of 99.81%. 

 

Figure 7. True and Estimated SOC. 

A second validation was also performed to estimate the SOC of cycles of a different month. 

Figure 8 shows that the ANN-2 is also able to perform this task, obtaining an MSE equivalent 3.13 × 

10−5 and an approximate hit ratio of 99.06%. 

 

Figure 8. True and Estimated SOC of a different month. 

5. Conclusions 

This paper presented a neural network methodology to estimate the SOC of lithium-ion battery 

banks usage. The neural network used was an MLP with two-layer architecture. The proposed ANN 

outlined in this paper resulted in accurate MSE for both situations. 

The results show that the ANN was able to self-learn the battery dynamics, allowing one to 

compete with the traditional SOC estimation techniques. Moreover, the inputs of the ANN do not 

include the previous SOC level, which makes its estimation more robust. 

An alternative to improve this work is to use other types of neural systems, like Recurrent Neural 

Networks combined with Extended Kalman Filtering (EKF). Another option is to map the non-linear 

characteristics of different battery cell chemistries like LiFePO4, LiCoO2, and LNMC/Graphite. 
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