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Abstract: The properties of the entropy production in convecting-radiating fins are analyzed.
By taking advantage of the explicit expression for the distribution of heat along the fin, we investigate
the possibility to assess the efficiency of these devices through the amount of entropy produced
in the heat transfer process. The analysis is performed both for purely convecting fins and for
convecting-radiating fins. A comparison with standard definitions of efficiency is given.
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1. Introduction

The longitudinal fins are widely used in applications to enhance heat dissipation from a given
device or from a suitable surface. The main mechanisms of heat dissipation are conduction, convection
and radiation. While for the first two mechanisms, making the appropriate simplification assumptions
(e.g., thermal coefficients independent of temperature), the mathematical models of temperature
distribution along the fin are linear, if radiation is added, the models become intrinsically nonlinear
and their analysis very challenging. In this work we investigate the role of entropy in assessing the
efficiency of the fin. We introduce a novel indicator of the ability of a fin to dissipate heat taking into
account the rate of entropy produced by the fin in its steady state. The entropy rate considered here
results from the contribution of convection and radiation. The evaluation of the efficiency of a fin with
an arbitrary general profile take advantage of the explicit analytical results for the distribution of the
temperature in convective-radiative fins obtained in [1], some of which are reported here for ease of
reading.

The work is organized as follows: in Section 2 we introduce the main equations describing the
evolution of the temperature along the fin and the corresponding boundary conditions. The rate
of entropies produced by convection and radiation by the fin are also introduced. In Section 3 an
entropy-based indicator for the effectiveness of the fin to dissipate heat is introduced and discussed.
For definiteness, the application of the method to some relevant cases is illustrated. In Section 4 the
formulae introduced are applied to the case of purely convective fin: the efficiency of a rectangular fin
is calculated and a comparison with the classical results from literature is given. In Section 5 the case
of a fin dissipating by convection and radiation is presented. Finally, in the conclusions, we discuss
our results and their possible generalizations.

2. The Entropy Production Due to Heat Exchange

We consider a longitudinal fin of arbitrary profile attached to a base at a temperature Tb. The fin
length is L, whereas the fin thickness at a distance x from the base is 2 f0(x) ≥ 0. The half thickness
at the base is fb = f0(x = 0), whereas at the fin tip, located at x = `, the half thickness is denoted by
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ft = f0(`) (see Figure 1). We assume that the Fourier law of heat conduction holds inside the fin and
that the temperature varies only along the x direction. The variation of the internal energy is assumed
to be equal to the energy gains (or losses) by conduction, radiation and convection.

Figure 1. The longitudinal fin with a profile described by a suitable f0(x) with the coordinate system,
the cross-sectional area and the geometrical properties. The case shown corresponds to ft = f0(`) = 0.

If ρ is the density of the homogeneous material, c its specific heat, κ the thermal conductivity, h the
convective heat transfer coefficient and σ the Stefan-Boltzmann constant, the evolution of temperature
T(x, t) is governed by the following equation:

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h

(
1 + 2

f0

L

)
(T − T0)− 2σε

(
1 + 2

f0

L

)
(T4 − T4

1 ), (1)

where T0 is the temperature of the fluid adjacent to the fin and T1 represents the temperature of the
effective radiation environment (i.e., the radiant energy absorbed by the fin per unit of time and surface
is εσT4

1 ) and ε is the emissivity of the fin.
If the fin thickness is small compared to its length, then the term f0/L can be ignored and

we obtain

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h(T − T0)− 2σε(T4 − T4

1 ) (2)

In the following we assume the fin to be in general non-gray, with T4
1 = kT4

0 , where k is the ratio
between the absorptivity and the emissivity of the fin [2]. For a gray fin one has to set k = 1 [2].

Equation (2) must be supplied with the initial and boundary conditions: we assume the boundary
conditions to be given by [1]

f0(x)
dT
dx

∣∣∣∣
x=0
− η0(T − Tb)|x=0 − ξ0 (T4 − kT4

b )
∣∣∣
x=0

= 0. (3)

and

f0(x)
dT
dx

∣∣∣∣
x=`

+ η1(T − T0)|x=` + ξ1 (T4 − kT4
0 )
∣∣∣
x=`

= 0. (4)

where ηi and ξi, i = 0, 1, are positive constants proportional to the Biot and radiation-conduction
numbers of the ends of the fin. The initial condition is given by T|t=0 = T(x, 0) = Tin(x).

We are interested in the entropy production due to heat exchange, so we assume that the main
contribution to the entropy production comes from convection and radiation. The entropy produced
by the friction of the fluid on the fin has been considered elsewhere (see e.g., [3]). For a process
starting from a temperature distribution at t = 0 given by Tin(x) up to the temperature T(x, t) at
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some time t > 0, the contribution at x to the entropy production due to the convection is given by
2h(L + 2 f0) ln (T/Tin) . Hence, for the entire fin we obtain

ṡh|Tin→T =
∫ `

0
2h(L + 2 f0) ln

(
T

Tin

)
dx (5)

The contribution to the entropy production due to the radiation can be explicitly calculated under
suitable assumptions. For completeness, we report the main formulae in the next lines; for more details
the reader can see for example [5]-[8] and [11]-[13]. We assume that the surface of the fin is diffuse
gray [2], i.e., it absorbs a fixed fraction of incident radiation for any direction and at any frequency
and emits a fixed fraction of the blackbody radiation. For a blackbody radiation, the mean occupation
number for the photon gas is given by

< n >=
1

e
hν

KBT − 1
(6)

where h is the Planck constant and KB the Boltzmann constant. The density of states per unit volume
and per unit solid angle is given by

ρ(ν) =
gν2

c3 (7)

where c is the speed of light and g is the degeneracy factor which takes into account the two possible
polarizations of the photons: it is equal to 2 for unpolarized photons (like in our case) and equal to 1
for polarized photons. The contribution to the entropy for each given frequency ν can be written as

s(v) = KB ((1+ < n >) ln(1+ < n >)− < n > ln(< n >)) . (8)

Equation (8), together with (6) and (7) give, for the total entropy of the blackbody radiation

S =
8πVK4

BT3

h3c3

∫ ∞

0
x2
[(

1 +
1

ex − 1

)
ln
(

1 +
1

ex − 1

)
−
(

1
ex − 1

)
ln
(

1
ex − 1

)]
dx (9)

In this case the integral can be evaluated explicitly: indeed, with an integration by parts, we get

∫ ∞

0
x2
[(

1 +
1

ex − 1

)
ln
(

1 +
1

ex − 1

)
−
(

1
ex − 1

)
ln
(

1
ex − 1

)]
dx =

1
3

∫ ∞

0
x4 ex

(ex − 1)2 dx. (10)

The integral on the right can be evaluated thanks to the following identity (see e.g., [4])

Iα(y)
.
=
∫ ∞

0

xα

ex−y − 1
dx = α! ∑

k=1

eky

kα+1 . (11)

For simplicity we can assume α ∈ R+ and y ∈ R−. By taking the derivative of I4(y) with respect
to y and evaluating it to 0 we get

∫ ∞

0
x4 ex

(ex − 1)2 dx = 4!
∞

∑
k=1

1
k4 =

4
15

π4 (12)

giving

S =
32πVK4

BT3π5

45h3c3 =
16σ

3c
VT3. (13)

This result, limited to the blackbody radiation when the number of photons is in equilibrium,
is well-known (see e.g., [5]). Due to the interaction of the radiation with matter the number of photons
is no longer conserved and the mean occupation number is reduced, for example, by the processes of
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absorption, emission and reflection (see e.g., [6]). As a consequence, the spectral energy irradiance is
reduced too. This reduction is accounted for by the emissivity ε of the material, so we can write

< nε >=
ε

e
hν

KBT − 1
. (14)

By repeating all the steps linking Equation (6) for < n > to Equation (13) for S for the balckbody
radiation, we get, in the case of a diffuse gray material with emissivity ε

Sε =
16σ

3c
I(ε)VT3 (15)

where I(ε) is a dimensionless integral giving the dependence of the radiation entropy by emissivity,
explicitly given by

I(ε) =
∫ ∞

0
x2
[(

1 +
ε

ex − 1

)
ln
(

1 +
ε

ex − 1

)
−
(

ε

ex − 1

)
ln
(

ε

ex − 1

)]
dx. (16)

The entropy rate for unit surface dṡ is obtained from (15) as [7,8]

dṡ =
16σ

3
I(ε)T3 (17)

From (5) and (17) it follows that the total contribution to the entropy production (in W/◦K) of the
fin by convection and radiation can be written as

ṡ|Tin→T = ṡh|Tin→T + ṡσ|Tin→T =
∫ `

0
2(L + 2 f0)

(
h ln

(
T

Tin

)
+

16σ

3
I(ε)(T3 − T3

in)

)
dx (18)

and, using the same approximation as in Equation (2), it follows

ṡ|Tin→T = 2L
∫ `

0

(
h ln

(
T

Tin

)
+

16σ

3
I(ε)(T3 − T3

in)

)
dx. (19)

For further convenience it is appropriate to introduce dimensionless variables. In particular,
let z = x/` and τ = κt/ρc`2 denote the dimensionless coordinates. Moreover we define θ = T/Tb,
θin = Tin/Tb, α = 2h`2/( fbκ), β = 2σε`2T3

b /( fbκ) and f (z) = f0(z`)/ fb. Equation (2) becomes

f (z)
∂θ

∂τ
=

∂

∂z

(
f (z)

∂θ

∂z

)
− α(θ − θ0)− β(θ4 − kθ4

0) (20)

with initial conditions θ(z, τ)|τ=0 = θ(z, 0) = θin(z) and boundary conditions

f (z)
dθ

dz

∣∣∣∣
z=0
− Bi0(θ − 1)|z=0 − N0(θ

4 − k)
∣∣∣
z=0

= 0,

f (z)
dθ

dz

∣∣∣∣
z=1

+ Bi1(θ − θ0)|z=1 + N1(θ
4 − kθ4

0)
∣∣∣
z=1

= 0,
(21)

where the Biot numbers Bij = ηj`/ fb, j = 0, 1, and the radiation-conduction numbers Nj = ξ j`/ fb,
j = 0, 1 were introduced.

3. The Role of Entropy in Assessing Efficiency of the Steady-State

A common indicator of the capability of a fin to dissipate heat is given by the efficiency [2,9,10].
To define this efficiency, it was necessary to introduce a reference state given by the fin at constant
temperature equal to the base temperature Tb (θ = 1). Accordingly, the efficiency η of the fin is defined
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as the ratio of the actual heat transfer to the ideal heat transfer for a fin of infinite thermal conductivity
in the reference state. It can be shown that, for the steady state solution of Equation (20), the efficiency
can be calculated as [1]

η =
Bi1(θ0 − θ(1)) + Bi0(1− θ(0)) + N1(kθ4

0 − θ(1)4) + N0(k− θ(0)4)

α(1− θ0) + β(1− kθ4
0)

. (22)

In order to make a comparison with the efficiency as above defined, the calculation of the entropy
production ṡ is performed by taking the same reference state. Hence, ṡ is given by

ṡ := ṡ|T→Tb
= ṡ|Tin→Tb

− ṡ|Tin→T (23)

and applying (19) it follows

ṡ = 2L
∫ `

0

(
16σ

3
I(ε)(T3

b − T3)− h ln
(

T
Tb

))
dx. (24)

In order to get clearer formulae, we introduce the reference entropy production due to convection,
ṡ0,h, and the reference entropy production due to radiation, ṡ0,σ, as follows:

ṡ0,h = 2L`h, ṡ0,σ = 2L`
16σ

3
I(ε)T3

b , (25)

so that the expression of the total entropy production reduces to

ṡ =
∫ 1

0

(
ṡ0,σ(1− θ3)− ṡ0,h ln (θ)

)
dz. (26)

Notice that the entropy rate ṡ0,σ corresponds to the entropy produced by a fin at θ = 0 (i.e., T = 0),
whereas the entropy rate ṡ0,h corresponds to the entropy produced by a fin at θ = exp(−1) ∼ 0.368
(i.e., T ∼ 0.368Tb).

As pointed out in [1], a large class of steady state solutions of Equation (20) with the boundary
conditions (21) are such that the dimensionless temperature θ(z) is bounded from below by the
(dimensionless) fluid temperature, θ0 = T0/Tb, and from above by the (dimensionless) base
temperature, θb = Tb/Tb = 1, i.e., θ ∈ (θ0, 1).

We are now able to define an entropy-based indicator for the effectiveness of the fin to dissipate
heat by convection and radiation. This can be done by defining

ηs = 1−
∫ 1

0

(
ṡ0,σ(1− θ3)− ṡ0,h ln (θ)

)
dz(

ṡ0,σ(1− θ3
0)− ṡ0,h ln (θ0)

) . (27)

If θ(z) = θ0, then ηs = 0, whereas ηs = 1 when θ(z) = θb = 1. We notice that the ratio of the
reference entropies ṡ0,σ and ṡ0,h is related to the ratio of the dimensionless convective and radiative
coefficients α and β (see the definitions before Equation (20)) through the formula

ṡ0,σ

ṡ0,h
=

16
3

I(ε)
ε

β

α
(28)

so that Equation (27) can be written also in the following form

ηs = 1−

∫ 1
0

(
16
3

I(ε)
ε β(1− θ3)− α ln (θ)

)
dz(

16
3

I(ε)
ε β(1− θ3

0)− α ln (θ0)
) (29)
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In the next section, we will investigate the reliability of this definition by analyzing the purely
convective case and making a comparison with the classical definition of efficiency (22).

4. Analysis of the Pure Convective Case

In this section we take into account a fin dissipating heat solely through the convective mechanism.
In this case Formula (27) reduces to

ηs = 1− 1
ln(θ0)

∫ 1

0
ln(θ)dz (30)

The simplest case is that of a rectangular longitudinal profile, meaning f (z) = 1 for the
dimensionless profile. The steady state temperature θ(z), solution of the Equation (20) with the
boundary conditions (21), has been given in [1] as

θ(z) = θ0 + (1− θ0)Bi0
m cosh(m(1− z)) + Bi1 sinh(m(1− z))

m(Bi0 + Bi1) cosh(m) + (m2 + Bi0Bi1) sinh(m)
. (31)

From the previous formula it is possible to get the temperature distribution along a fin with
an insulated tip and a base at T = Tb. When N0 and N1 are both zero, the boundary condition
corresponding to an insulated tip is obtained from (21) by taking Bi1 = 0, whereas the boundary
condition corresponding to a base at T = Tb is obtained by taking the limit Bi0 → ∞. If this is the case,
Equation (31) reduces to

θ(z) = θ0 + (1− θ0)
cosh(m(1− z))

cosh(m)
. (32)

By Equation (30), the corresponding value of entropic efficiency is

ηs = −
1

ln(θ0)

∫ 1

0
ln (1 + a cosh(my)) dy, (33)

where a = 1−θ0
cosh(m)θ0

. It is interesting to look at what happens when θ0 is close to 1. In the limit θ0 → 1,
it is possible to show that

ηs =
tanh(m)

m
+

1
8

sinh(2m)− 2m
2m(1 + cosh(2m))

(1− θ0) + O((1− θ0)
2) (34)

For a temperature profile given by (32), the classical efficiency (22) (i.e., the ratio of the actual heat
transfer to the ideal heat transfer for a fin of infinite thermal conductivity) is then given by [1,9]

η =
tanh(m)

m
(35)

so that Formula (34) can be rewritten as

ηs = η +
1
8

sinh(2m)− 2m
2m(1 + cosh(2m))

(1− θ0) + O((1− θ0)
2) (36)

From this example it is apparent that (30) can be seen as an extension of the classical definition of
the efficiency based on the quantity of heat dissipated by the fin. In Figure 2 we plot the Formula (33)
as a function of θ0 and m. For comparison, the Gardner’s result (35) is also reported.
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Figure 2. The plot of the efficiency ηs (33) as a function of θ0 and m (blue) and the classical Gardner’s
Formula (35) (in red).

A further support to the above point of view is given by looking at the efficiency corresponding
to the more general profile temperature (31) in the same limit θ0 → 1. Now, from formulae (31) and
(33) we get

ηs = Bi0
Bi1(cosh(m)− 1) + m sinh(m)

m (m(Bi0 + Bi1) cosh(m) + (m2 + Bi0Bi1) sinh(m))
+ O(1− θ0). (37)

Again, the first term of this expansion is exactly the efficiency obtained by applying the classical
definition of efficiency (22) (see [1], where the classical expressions of efficiency for different other
profiles have been given).

In the next section we will look at the more general convective-radiative case.

5. Entropic Efficiency in the Convecting-Radiating Fin

The case of a fin dissipating both by convection and radiation is more challenging since the
differential equation, describing the steady state temperature along the fin, is nonlinear and the general
solution of the differential equation cannot be written explicitly. In [1] the authors have been able,
thanks to a change of variables, to write down (in terms of an auxiliary function y(z)) a family of
explicit solutions to Equation (20) in the steady case with the boundary conditions (21). For the sake of
completeness we report the main formulae and restrict the discussion to gray fins (i.e., we set k = 1 in
Equations (20) and (21)).

If the change of variables

θ(z) = θ0 + wy(z)2, w ∈ R, (38)

is inserted into the steady version of Equation (20), and if the further constrain f (z) dy
dz = 1 is assumed,

then the resulting differential equation can be integrated to give the following implicit formula for
y(z) [1]

− A
y
+ E1 arctan

(
y
b1

)
+ E2

(
arctan

(
y + a2

b2

)
+ arctan

(
y− a2

b2

))
+ F2 ln

(
(y + a2)

2 + b2
2

(y− a2)2 + b2
2

)
=

βw3

2
(z + c), (39)
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where the values of A, E1, E2 and F2 are given by:

E1 = − 1
b3

1
(
a2

2 + (b1 − b2)2
) (

a2
2 + (b1 + b2)2

) ,

E2 =
1
4

(
(a2

2 − 3b2
2)(a2

2 + b2
1 − b2

2)− 2b2
2(3a2

2 − b2
2)
)(

a2
2 + (b1 − b2)2

) (
a2

2 + (b1 + b2)2
) (

a2
2 + b2

2
)3 b2

,

A =
1

b2
1(a2

2 + b2
2)

2
, F2 =

1
8

(
(b2

2 − 3a2
2)(a2

2 + b2
1 − b2

2) + 2a2
2(3b2

2 − a2
2)
)(

a2
2 + (b1 − b2)2

) (
a2

2 + (b1 + b2)2
) (

a2
2 + b2

2
)3 a2

.

In these expressions the coefficients b1, a2 and b2 are explicit functions of the dimensionless fluid
temperature θ0, the ratio α/β and the parameter w appearing in (38). More explicitly one has:

b1 =

√
2θ0 + b

w
, a2

2 =
b− 2θ0 + 2

√
2θ2

0 + b2

4w
, b2

2 =
2θ0 − b + 2

√
2θ2

0 + b2

4w
. (40)

where the value of b is fixed by the unique real solution of the following cubic equation,

α

β
= b(b2 + 2bθ0 + 2θ2

0). (41)

At this point it remains to fix the values of the constant c, appearing in (39), and w, appearing in
(38). They can be fixed by exploiting the boundary condition at z = 0. Indeed, it is possible to show
(see [1]) that the first of the two boundary conditions (21) can be written as the following polynomial
equation for y(0) = y|z=0,

Bi0(wy(0)2 − (1− θ0)) + N0

(
(wy(0)2 + θ0)

4 − 1
)
− 2wy(0) = 0. (42)

Further, for fixed values of the parameters Bi0, N0, θ0 and w, this equation possesses always one
real negative solution (see [1]), say y−. The initial condition for y is then y(0) = y−.

For consistency with the assumed constraints f (z) dy
dz = 1 and f (0) = 1, it is possible to show that

the value of w must be fixed by the following equation

f (0) = 1 =
2

βy2
−
(
wy2
− + 2θ0 + b

) ((
wy2
− + θ0 − b

2

)2
+ θ0(θ0 + b) + 3

4 b2
) , (43)

whereas the value of c is fixed by Equation (39) evaluated at y = y− and z = 0. Consequently, the values
of y as a function of z are implicitly determined by Equation (39) for any choice of the parameters
β, a and b (i.e., of the parameters θ0, α and β of the steady version of the differential Equation (20)).
Through Equation (38), these functions give the corresponding values of the dimensionless temperature
in the steady state θ(z).

Now we will apply the methodology reported above to describe the dependence of the entropic
efficiency (29) on the dimensionless convection and radiation coefficients α and β and on the
emissivity ε.

For simplicity we analyze the case of a fin with a base at T = Tb, i.e., θ(0) = 1, corresponding to
Bi0 → ∞ and/or N0 → ∞. In this case the value of w can also be written as

w =
1
2

(
α(1− θ0) + β(1− θ4

0)
)

. (44)

To fix the ideas we can assume the emissivity ε to be equal to 0.5. The corresponding value of
the integral I(ε) (16) is given by I(ε) ∼ 5.097. We first choose two different values of θ0: θ0 = 0.1 and
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θ0 = 0.5. For each of these choices we consider four different values of α, namely α = {0.1, 0.5, 1, 2},
and twenty different values of β, from β = 0.1 to β = 2. Then, according to Equations (38) and (39) we
calculate the distribution of temperatures along the fin, corresponding to a given set of parameters.
Finally, we obtain the amount of entropic efficiency of each state by means of Equation (29). The results
are reported in Figures 3 and 4: in all cases the efficiency decreases with increasing β and decreases
with increasing α. The resulting behavior of ηs is in agreement with that of the classical efficiency (22)
by performing similar variations of the parameters. For comparison we report in Figure 5 the values of
the efficiency calculated with Formula (22) (given in [1]) by using the same choices of the parameters
as above.

Figure 3. The plot of the efficiency ηs as a function of β for θ0 = 0.5 and four different values of α.

Figure 4. The plot of the efficiency ηs as a function of β for θ0 = 0.1 and four different values of α.
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Figure 5. The plot of the classical efficiency η (from [1]) as a function of β for θ0 = 0.1 and θ0 = 0.5 and
four different values of α.

6. Conclusions

We introduced a novel indicator giving the efficiency of the performances of longitudinal
fins of arbitrary profile based on the amount of entropy produced by the fin in its steady state.
The contributions to the entropy taken into account have been those coming from convection and
radiation. It has been shown that this definition gives values of efficiency that are compatible, in a
first approximation, to those given by the classical definition of efficiency based on the analysis of the
heat transfer by convection and radiation. In our opinion our definition is however more flexible: the
role of the fluid temperature is explicit and this is particularly evident for example from Equation (36).
In order to perform the analysis of both the convective and the full convective-radiative cases, we took
advantage of the results appeared in [1], where explicit steady solutions of the relevant equations
for the distribution of temperature along the fin have been obtained. This work can be considered
a starting point for a more in-depth analysis of the efficiency of fins with different profiles and with
different mechanisms of heat dissipation. The methodology developed here is fairly general and,
although it has been applied to a few simple cases here, it is worth taking into consideration and
applied to more complex cases.

Funding: The financial support of INFN, GNFM-INdAM and University of Brescia are gratefully acknowledged
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