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Introduction — background

* Linear Engine Generator (LEG) — a novel hybrid—powertrain solution

— Simpler and more compact structure

— Lower friction loss

— More control freedom
— Wider fuel adaptability

* Ammonia as a fuel — carbon-free alternative fuel and potential hydrogen carrier

— High gravimetric and volumetric hydrogen density

— Well-established industry of production, storage, transportation and utilization

— Renewable production technologies are available
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Introduction — objectives

« A more detailed and extensive investigation under engine-operation condition is still required
to better support the combustion system of the target LEG prototype.

* Identify an ammonia chemical kinetic reaction mechanism

 Parametric study on the effects of equivalence ratio, hydrogen blending ratio, initial
temperature and initial pressure on premixed laminar flame speed, ignition delay and flame
species
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Methodology

ANSYS CHEMKIN PRO

Premixed laminar flame speed modelling | |G| |
Ignition delay time modelling O
Burner-stabilized flame structure modelling E—" &

~H

€ Mechanism selection | € Parametric study

Chemical kinetic reaction mechanism Factor Range

Equivalence ratio 0.8—-1.6

Otomo’s mechanism?

Hydrogen blending ratio 0.0—-0.6

Initial temperature 300 — 700 K
Nakamura’s mechanism® Initial pressure 1—20 bar

Duynslaegher’s mechanism*

[3] Otomo, J.; Koshi, M.; Mitsumori, T.; Iwasaki, H.; Yamada, K., Chemical kinetic modeling of ammonia 436 oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion.
437 International Journal of Hydrogen Energy 2018, 43, (5), 3004-3014.

[4] Duynslaegher, C.; Contino, F.; Vandooren, ].; Jeanmart, H., Modeling of ammonia combustion at low 443 pressure. Combustion and Flame 2012, 159, (9), 2799-2805.

[5] Nakamura, H.; Hasegawa, S.; Tezuka, T., Kinetic modeling of ammonia/air weak flames in a micro flow 461 reactor with a controlled temperature profile. Combustion and Flame 2017, 185, 16-27.
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Mechanism selection

+ Premixed laminar flame speed: E%NH; = 20%, 50%, Chemical kinetic reaction mechanism

80% Otomo’s mechanism
* Ignition delay: 1.4,11,30 atm

* Main species: NH3, N,, H,, NO,N,0, NH, ————— — —~ == ~—=
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Results — premixed laminar flame speed

* increases significantly and non-linearly as more hydrogen is introduced
— Comparable to the flame speed of methane (~37cm/s) as ¢ = 1.1, x%H, = 0.4

+ peaks when ¢ is around 1.1 — 1.2

* Increases with the increasing initial temperature and decreases with the increasing initial pressure
— Less sensitive to initial pressure under high pressure conditions
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Results — ignition delay

* Shorten considerably with hydrogen addition
— Minor influence as x%H, is over 0.5

¢ etfect is weaker as more hydrogen addition is added

A high initial temperature and initial pressure environment promotes ignition
— Minor influence as the initial pressure is over 10 bar
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Results — flame species
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Results — flame species
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Results — flame species
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Summary & conclusions

Nakamura’s mechanism is employed for parametric study.

An optimized equivalence ratio exists around 1.1 — 1.2.

Increasing hydrogen will not cause a large increase in NO emissions at a certain ¢, while
helping to promote the flame speed and ignition.

High-pressure high-temperature environment is favourable for improving ignition and low NO
emission from NHs/H, combustion.
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