WEF The First World Energies Forum 2020 Current and Future Energy Issues

Characteristics of ammonia/hydrogen premixed combustion in a novel Linear Engine Generator

<u>Fangyu Zhang</u>^{1*}, Gen Chen¹, Dawei Wu¹ Tie Li², Zhifei Zhang², Ning Wang²

¹ School of Engineering, Department of Mechanical Engineering, University of Birmingham ² School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University *FXZ980@student.bham.ac.uk

- Introduction
 - Background
 - Objectives
- Methodology
- Mechanism selection
- Results
 - Premixed laminar Flame speed
 - Ignition delay time
 - Flame species
- Summary & conclusions

Introduction – background

- Linear Engine Generator (LEG) a novel hybrid–powertrain solution
 - Simpler and more compact structure
 - Lower friction loss
 - More control freedom
 - Wider fuel adaptability
- Ammonia as a fuel carbon-free alternative fuel and potential hydrogen carrier
 - High gravimetric and volumetric hydrogen density
 - Well-established industry of production, storage, transportation and utilization
 - Renewable production technologies are available

[1] Jia, B., et al., *Dynamic and thermodynamic characteristics of a linear Joule engine generator with different operating conditions.* Energy Conversion and Management, 2018. **173**: p. 375-382.

[2] Kobayashi, H., et al., *Science and technology of ammonia combustion*. Proceedings of the Combustion Institute, 2019. **37**(1): p. 109-133.

WEF2020, 14 September - 05 October | Online

- A more detailed and extensive investigation under engine-operation condition is still required to better support the combustion system of the target LEG prototype.
- Identify an ammonia chemical kinetic reaction mechanism
- Parametric study on the effects of equivalence ratio, hydrogen blending ratio, initial temperature and initial pressure on premixed laminar flame speed, ignition delay and flame species

- Introduction
 - Background
 - Objectives
- Methodology
- Mechanism selection
- Results
 - Premixed laminar Flame speed
 - Ignition delay time
 - Flame species
- Summary & conclusions

ANSYS CHEMKIN PRO	
Premixed laminar flame speed modelling	
Ignition delay time modelling	\bigcirc
Burner-stabilized flame structure modelling	

Mechanism selection

Parametric study

Chemical kinetic reaction mechanism

Otomo's mechanism³

Duynslaegher's mechanism⁴

Nakamura's mechanism⁵

Factor	Range
Equivalence ratio	0.8 - 1.6
Hydrogen blending ratio	0.0 - 0.6
Initial temperature	300 – 700 <i>K</i>
Initial pressure	1 – 20 bar

[3] Otomo, J.; Koshi, M.; Mitsumori, T.; Iwasaki, H.; Yamada, K., Chemical kinetic modeling of ammonia 436 oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. 437 *International Journal of Hydrogen Energy* **2018**, 43, (5), 3004-3014.

[4] Duynslaegher, C.; Contino, F.; Vandooren, J.; Jeanmart, H., Modeling of ammonia combustion at low 443 pressure. *Combustion and Flame* 2012, 159, (9), 2799-2805.

[5] Nakamura, H.; Hasegawa, S.; Tezuka, T., Kinetic modeling of ammonia/air weak flames in a micro flow 461 reactor with a controlled temperature profile. Combustion and Flame 2017, 185, 16-27.

WEF2020, 14 September - 05 October | Online

- Introduction
 - Background
 - Objectives
- Methodology
- Mechanism selection
- Results
 - Premixed laminar Flame speed
 - Ignition delay time
 - Flame species
- Summary & conclusions

Mechanism selection

Premixed laminar flame speed: $E\% NH_3 = 20\%$, 50%, • 80%

10

 10^{0}

10-"

 10^{-2}

4.5

5

Ignition delay time [ms]

11atm

Ignition delay: 1.4, 11, 30 atm •

E% NH₃=80%

Kumar et al.

Otomo et al.

0.6

-Nakamara et al.

-Duynslaegher et al.

30

25

10

5

0

Main species: NH_3 , N_2 , H_2 , NO, N_2O , NH_2 •

0.8

 ϕ [-]

- Introduction
 - Background
 - Objectives
- Methodology
- Mechanism selection
- Results
 - Premixed laminar Flame speed
 - Ignition delay time
 - Flame species
- Summary & conclusions

Results – premixed laminar flame speed

- increases significantly and non-linearly as more hydrogen is introduced
 - Comparable to the flame speed of methane (~37cm/s) as $\phi = 1.1$, $x\% H_2 = 0.4$
- peaks when ϕ is around 1.1 1.2•
- Increases with the increasing initial temperature and decreases with the increasing initial pressure ٠
 - Less sensitive to initial pressure under high pressure conditions

x%H₂=0.0

700

600

500

Results – ignition delay

- Shorten considerably with hydrogen addition
 - Minor influence as $x\%H_2$ is over 0.5
- ϕ effect is weaker as more hydrogen addition is added
- A high initial temperature and initial pressure environment promotes ignition
 - Minor influence as the initial pressure is over 10 *bar*

Results – flame species

♦ Equivalence ratio

- *NO* dominates in the *NO*_x emissions
- With φ increases, NO emission is reduced and H₂ is increased apparently
- *NO* production:
 - HNO + H/OH (fuel-bound NO)
 - $N + O_2/OH$ (thermal NO)
- *NO* consumption:
 - $NO + NH_i/N$
- In the rich flame, the production of fuel-bound *NO* decreases and consumption of *NO* + *N* reaction increases

Results – flame species

Hydrogen blending ratio

- With x%H₂ increases, NO emission slightly increases and H₂ keeps almost unchanged
- *NO* emission increases:
 - Thermal *NO* contribution (production and consumption) increases as $x\%H_2$ increases
- *H*₂ keeps unchanged:
 - H_2 + OH reaction promotes as $x\%H_2$ increases

Results – flame species

Initial temperature and initial pressure

- *NO* emission decreases as the initial temperature rises
 - the rate of both production and consumption is decreased
- *NO* emission also decreases as the initial pressure rises
 - the consumption of *NH_i* species via the promoted radical combination reactions under high pressure conditions

- Introduction
 - Background
 - Objectives
- Methodology
- Mechanism selection
- Results
 - Premixed laminar Flame speed
 - Ignition delay time
 - Flame species
- Summary & conclusions

- Nakamura's mechanism is employed for parametric study.
- An optimized equivalence ratio exists around 1.1 1.2.
- Increasing hydrogen will not cause a large increase in *NO* emissions at a certain φ, while helping to promote the flame speed and ignition.
- High-pressure high-temperature environment is favourable for improving ignition and low *NO* emission from NH_3/H_2 combustion.

Thank you!

