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Abstract: This paper presents a critical and analytical description of an ongoing research program 

aimed at the implementation of an expert system capable of monitoring, through an Intelligent 

Health Control procedure, the instantaneous performance of a cogeneration plant. The expert 

system is implemented in the CLIPS environment and is denominated PROMISA as the acronym 

for PROgnostic Module for Intelligent System Analysis, generates, in real time and in a form directly 

useful to the plant manager, information on the existence and severity of faults, forecasts on the 

future time history of both detected and likely faults, and suggestions on how to control the 

problem.  The expert procedure, working where and if necessary with the support of a process 

simulator, derives from the available real-time data a list of selected performance indicators for each 

plant component. For a set of faults, pre-defined with the help of the plant operator (Domain 

Expert), proper rules are defined in order to establish whether the component is working correctly; 

in several instances, since one single failure (symptom) can originate from more than one fault 

(cause), complex sets of rules expressing the combination of multiple indices have been introduced 

in the knowledge base as well. Creeping faults are detected by analyzing the trend of the variation 

of an indicator over a pre-assigned interval of time. Whenever the value of this ‘‘discrete time 

derivative’’ becomes ‘‘high’’ with respect to a specified limit value, a ‘‘latent creeping fault’’ 

condition is prognosed. The expert system architecture is based on an object-oriented paradigm. 

The knowledge base (facts and rules) is clustered: the chunks of knowledge pertain to individual 

components. A graphic user interface (GUI) allows the user to interrogate PROMISA about its rules, 

procedures, classes and objects, and about its inference path. The paper also presents the results of 

some simulation tests. 

Keywords: energy systems; expert systems; systems prognostics 

 

1. Introduction  

Modern energy conversion plants are very complex systems under a technological point of view. 

Any downtime or drop in the energy quality of the output involve often unacceptable elevate direct 

and indirect monetary losses, but even more important is the resource destruction that constitutes 

the end result of the fault. All modern design methods contain procedures that take into due account 

variable load conditions (off-design operation), availability losses due to scheduled and unscheduled 

maintenance and performance degradation due to wear and fouling in the equipment.  

To lessen the likelihood of plant failures, preventive maintenance is regularly performed: it 

reduces by three to nine times the costs in lost production [1], higher costs for parts, and other 

overhaul costs compared to reactive, unplanned maintenance. 

Among the different types of preventive maintenance, Condition-based Maintenance (CBM) 

presents several advantages when applied to energy conversion systems. CBM is a maintenance 
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strategy that monitors the actual health evolution in time of the plant operational performance and 

reports the cause(s) of the detected malfunctioning. Therefore, maintenance will only be performed 

when certain indicators show signs of decreasing performance or upcoming failure. These indicators 

include non-invasive measurements, performance data and scheduled tests. 

Compared with preventive maintenance, CBM thus increases the time between maintenance 

interventions, because maintenance is done on an as-needed basis [2–4]. 

Condition data can be gathered either at certain intervals, or continuously. The analysis of the 

data flowing from the plant becomes rapidly overwhelming, which make it difficult to analyze. A 

powerful aid to this task is provided by the implementation of an expert system. The choice of a 

knowledge-based expert system rather than a deep learning solution is suggested because a lack of 

training data makes machine learning approaches fall short. Moreover, the expert system works 

toward explainable AI and expands the knowledge through collaborative interactions. Most modern 

AI algorithms are like black boxes resulting in answers and recommendations without any insight 

into how the system arrived at those answers and which parameters were most significant.  

Intelligent process management tools (IPMTs) [5,6] are not only by definition capable of 

producing an intelligent diagnosis of the present state of the plant but also to enact a prognostic 

action, making intelligent estimates of the future state of the plant under the foreseen boundary 

conditions [7]. Finally, they can use design, operation and load-scheduling data, together with other 

relevant external information (like for instance local weather forecasts or projected operating load 

curves of similar plants in the same ‘‘fleet’’) to provide operators with valuable information about 

the ‘‘optimal’’ operating curve of the plant in some future period T [8]. 

The present paper describes the development of a diagnostic and prognostic tool, specifically 

designed for a gas turbine-based cogeneration system; its development constitutes though a useful 

paradigm for different applications.  

Let us define the plant availability factor PF as the ratio of the total equivalent full load operating 

hours in a year and the total number of hours in the year. It is apparent that no energy conversion 

plant can operate with PF equal to 1, due to three orders of reasons:  

(a) plant shutdowns due to scheduled maintenance;  

(b) plant shutdowns due to unscheduled maintenance;  

(c) plant shutdowns due to sudden failures.  

It is useful for our purposes to separately account for events of type ‘‘b’’, that imply the 

replacement of a component for which an early failure has been prognosed, and events of type ‘‘c’’, 

in which the replacement is done after the failure has forced a plant shutdown.  

Our study specifically concentrates on plant shutdowns due to sudden failures. Strictly 

speaking, ‘‘sudden catastrophic failures’’ rarely happen as such, and when they do, they are 

obviously by definition unforeseeable. But extensive field studies have conclusively shown that most 

of the failures we call ‘‘sudden’’ are in reality caused by a series of component-localised phenomena 

that lead to a (usually very small but still significant) deterioration of its performance. 

Our efforts may thus be redirected to the early detection of these ‘‘performance degradation’’-

warning signals. The method to follow is in principle straightforward: a sufficient number of ‘‘critical 

points’’ in the process are monitored in real time, and a specific series of performance decay 

indicators are computed. As soon as one of these faults is detected, the operator, working under tight 

co-operation with the designer and the plant manager decides whether to execute an immediate 

shutdown to fix the fault, or to wait until the next scheduled maintenance intervention.  

2. The General Conceptual Layout of a Diagnostic/Prognostic System  

In the language of artificial intelligence (AI), we say that a procedure is enacted by an ‘‘Agent’’. 

In the following description, the agent is our expert system: but it is easy to recognise a high degree 

of similarity between the individual steps of the procedure and the actions that a human operator 

would take when executing the same task. Our scope here is to show that both the procedures in its 

entirety and each one of its single steps is feasible at the present level of AI technology. We shall 
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separately describe the diagnostic and the prognostic procedures, but will show later that they both 

admit a meta-procedure, i.e., they can be embedded in a single code.  

2.1. A Diagnostic System  

A possible procedure for an automatic diagnostic system consists of the following steps:  

1. The intelligent agent (IA) must identify in “real time” the operational state of the process. This 

requires that the IA be endowed with an efficient interface with a process data collection system 

which produces vector of length N containing an ordered set of measurables, i.e., of process 

parameters that identify the state (mass flow rates, pressures, temperatures, etc.).  

2. At each selected time step, the IA must compare, at each selected time step, the detected 

operational state with the expected one. To do this, IA must have access either to a pre-

determined operational process schedule of the process, or, if the latter is not available, to a 

reliable process simulator that provides the IA with such reference operating state.  

3. If the value of the kth measurable differs from the corresponding design value by more than a 

preset tolerance, the IA activates a monitoring-and-control procedure on the component to 

which this measurable pertains.  

4. The IA verifies whether the ‘‘failure’’ condition just detected appears in one of the ‘’fault chains’’ 

contained in its knowledge base. If it does, then the IA proceeds to step 5 here below. If it does 

not, the IA activates a sub-procedure to monitor k for a prescribed period of time, and notifies 

the (human) plant operator of this action.  

5. If the event ‘‘kth measurable out of range’’ belongs to one or more fault chains known to the IA, 

the agent launches a monitoring-and-control procedure on all measurables i, j, …, p that appear 

together with k in the detected fault chains.  

6. If a fault chain is indeed identified as ‘‘active’’, the IA will: a—notify the plant operator; b—

consult its knowledge base to search for remedial actions (e.g., adjustment of other process 

parameters to compensate for the derangement in k); c—decide whether it is possible to wait for 

the next scheduled maintenance intervention or a repair/substitution is immediately necessary. 

2.2. A Prognostic System  

A possible procedure for an automatic prognostic system consists of the following steps:  

1. The IA must compare at a pre-determined time step the operational state of the process.  

2. The IA projects the detected operational state forward in time, founding this projection on the 

most recent time history (two or more previous time steps) of the process.  

3. If the projected value of the kth measurable at t + Δt activates one of the known fault signatures, 

or if it shows an undesirable trend in the time history of xk
 
(e.g., “dxk/dt too high” according to 

some norm), the IA activates a monitoring-and-control procedure on the component to which 

this measurable pertains.  

4. The IA also launches a monitoring-and-control procedure on all measurables r, s, …, z that are 

related to k (i.e., whose values are known to be functionally linked to the value of xk).  

5. Otherwise, the IA keeps monitoring xk
 
for a pre-defined time interval, and notifies the plant 

operator of this action.  

6. If the IA estimates that a fault chain may be ‘‘activated’’ by an excessive variation of xk, it will:  

A.notify the plant operator;  

B. consult its knowledge base to search for and recommend actions (e.g., adjustment of other 

process parameters to compensate for the derangement in xk 

C. decide whether it is possible to wait for the next scheduled maintenance intervention or a 

repair/substitution is immediately necessary.  

Notice the remarkable analogy between the steps of the diagnostic and those of the prognostic 

procedure. 
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3. Theoretical and Practical Aspects of the Implementation of the Intelligent Agent  

For the intelligent agent to be in fact ‘‘expert’’ and ‘‘intelligent’’ in performing his task, its 

knowledge base (KB) must be as ‘‘complete’’ and ‘‘exact’’ as possible: 

• ‘‘Complete’’ means that there must exist a one-to-one mapping of all rules and information 

available to the human operator and this KB.  

• ‘‘Exact’’ means that this mapping must be logically consistent, i.e., that no logical chain of 

induction correctly derived from the KB contradicts any of the rules and information available 

to the human operator.  

3.1. The Meta-Rules of Failure Detection  

It is known from AI theory [9,10] that it is convenient to re-organise, wherever possible, the 

knowledge bits acquired during the knowledge acquisition phase. Such a systematization goes in 

favour of the transparency and the accessibility of the ‘‘built-in-logic’’ of the expert system. In the 

case in point, we are dealing with ‘‘failures’’ of a system, and we have found it useful to construct 

our KB on the basis of the following seven meta-rules:  

1. There exists a finite number of possible types of failure, and for each one of them there exists at 

least one specific signature, i.e., a unique combination of the process parameters.  

2. There are no sudden failures: every possible failure is ‘‘forewarned’’ by a drifting of the point 

representative of the operational state of the plant, on a path that leads to a specific attractor in 

the state space (the failure point).  

3. Each one of these ‘‘drifting’’ processes has a characteristic time scale that depends both on the 

component and on the type of failure.  

4. A convenient way to represent such a drifting is that of employing a proper set of dimensionless 

indicators, each defined as the ratio of the instantaneous value of a measurable of interest to its 

‘‘design’’ value. Notice that such a design value is in reality a time-dependent quantity: it is the 

value expected for the same instantaneous operative conditions but without any derangement.  

5. The process of ‘‘failure formation’’ is described by at least one ‘‘fault chain’’, i.e., an ordered list 

of the immediate causes of the failure. There may be more than one chain (see point 6 here 

below). Each chain though has at least two fuzzy aspects: first, the ‘‘causes’’ it contains are 

necessary, but not sufficient (for example, for a creep failure in a first row statoric blade in a gas 

turbine, it is necessary that the gas temperature at turbine inlet be higher than a certain design 

limit; but once the temperature exceeds this limit, failures are not certain). Second, even this 

necessity is affected by some degree of uncertainty (for example, a blade failure may happen 

even if the gas temperatures are below the design limit).  

6. Some of the fault chains may be concurrent. That is, the same failure stem from one or the other 

or from a combination of two (or more) fault chains. 

7. Many of the fault signatures are non-local: the values of measurables detected at locations 

physically remote from the point where the failure actually takes place may be affected by the 

drifting process mentioned in point (2). In this case, we say that these measurables (and the 

indicators constructed on them) are correlated with the ones immediately affected by the failure.  

3.2. Formalisation of the Fault Signatures and Choice of the Fault Indicators  

A very extensive database is available for the monitoring of all energy conversion plants (e.g., 

‘‘efficiency’’, ‘‘mechanical output’’, ‘‘thermal output’’), and especially for gas turbines and their 

derivates (combined and cogeneration plants), a very extended database is available. There is a body 

of international industrial standards, often validated by Public Agencies, which regulates even the 

fine details of the type and tolerance of the measurables. Our approach here is though rather different: 

we are not interested in the abidance by contractual specifications, but rather in a (continuous) 

monitoring of whether the system operates within a certain number of admissible states. Therefore, 

the various sets of measurables defined by International Standards do not suffice for our purpose: in 
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fact, our KB complements them with other knowledge bits derived from design handbooks, operators 

manuals and interviews with field experts. Using as an example a standard gas turbine plant, Table 

1 reports a list of failures to be diagnosed/prognosed and Table 2 the indicators adopted. 

Table 1. Examples of possible faults for a gas turbine. 

Component  Possible Fault(s)  Component  Possible Fault(s)  

Filter  Leakage  

Fouling  
Secondary heat 

exchanger  

Fouling  

Compressor  Stall 

Choking 

Fouling 

Excessive exit 

temperature 

Malfunctioning  

Primary loop  Fouling  

Primary Combustion 

Chamber 

Fouling  

Excessive pressure 

losses  

CH4- or H2O valve 

failure  

Secondary loop Fouling  

Primary fuel Injector  Fouling Failure  Main pump Cavitation 

Malfunctioning  

Boiler stack  Secondary combustion 

reactions Fouling 

Leakage  

Main shaft  Near-critical 

vibration frequencies  

Turbine  Fouling 

Choking 

Excessive inlet 

temperature  

Afterburner  CH
4 

injector fouling  

Primary heat 

exchanger  
Fouling    

 

Table 2. Example of indicators. 

Air filter  I1 = Δp/Δpd Turbine  I11 = ηc/ηcd 

I12 = Tex/Texd 

I13 = mex/mexd 

Compressor I2 = cp ΔT/cpΔTd 

I3 = ηc/ηcd 

I4 = βc/βcd = pc/pcd 

I5 = mc/mcd 

Electrical generator I14 = ωc/ωcd 
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Combustion 

chamber  

I6 = Δpcc/Δpccd 

I7 = mcc/mccd 

Afterburner  I14 = ΔT/ΔTd 

I15 = m/md 

Fuel injector  I8 = mfi/mfid Main pump  I16 = mp/mpd 

I17 = Δpp/Δppd 

Boiler main 

stack  
I9 = XNOX/XNOXd 

I10 = XCO2/XCO2d 

Shaft (vibrations)  I18 = rms/rmsd 

 

3.3.1. The Mathematical Formulation 

Define the ‘‘performance function’’ ΠP of an energy conversion process P as the deterministic 

mathematical relation between the instantaneous process output(s) and a set of N process parameters 

that we call the measurables: ΠP may be thought of as an operator that, applied to the vector X of 

measurables, generates the output vector Y, ΠP(X) = Y. Now, denote as X’ a deranged operational 

state, in which some of the measurables have taken values slightly, but detectably, different from the 

design values. The new functional value assumed by the operator ΠP(X): 

ΠP(X’) ~ ΠP(X) + dΠ/dX (X − X’) (1) 

 

where dΠ/dX represents the term-by-term derivative of a vector and not the total differential and the 

new vector of measurable is:  

ΠP(X’) = Y’ (2) 

 

3.3.2. The Knowledge Base Implementation 

To complete the transition from the mathematical representation of component failure to the 

knowledge base construction it is necessary to create the so-called fault chains diagrams. 

The first step is to define the ‘‘performance indicators’’ on which the derangement from 

‘‘standard operative conditions’’ is measured. The plant operating manual and the design 

specifications provided by the designer and by the constructor define only a very limited set of 

operating points. We must add some form of ‘‘logical extrapolation’’ based on an intelligent 

comparison between the measured data and a set of proper theoretical operating curves (this step 

requires the assistance of a Domain Expert). At this point, we can create the fault chains for the 

knowledge base of the expert system. 

An example of failure detection criteria for compressors are presented in Table 3. 

Table 3. Failure detection criteria for compressors. 

Compressor  Fouling  

Malfunctioning  

Choking  

Excessive T
3  

Stall  

I2 = cp ΔT/cpΔTd 

I3 = ηc/ηcd 

I4 = βc/βcd = pc/pcd 

I5 = mc/mcd 

(I3 low U I4 low) or (I3 low U I2 

high) 

(I3 high U Wc high) 

(I4 low U I5 high) or (I4 low U T3 

low) 

I2 high 

I4 low U I5 low 
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The corresponding failure chain for compressor chocking is presented in Figure 1. 

 

Figure 1. Compressor chocking fault chain. 

The expert system, knowledge base and inference engine, have been written in CLIPS, an open-

source programming environment. The inputs are fed to the knowledge base from a pre-processor 

that receives and elaborates data either from a data acquisition system or from a plant simulation. 

The code scans all fault indicators, establishes the progression at assigned time steps and feeds the 

results to the inference engine of the expert system. That consults the knowledge base to determine 

if there is a incipient fault and its possible causes.  
 

In Figure 2 is presented an example of the code for the compressor fault chain.  
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Figure 2. Example of CLIPS output for manual input. 

4. Discussion 

The possibility of devising and implementing an AI procedure to extend the fault diagnosis into 

the realm of prognostic is -at the current state of the art- perfectly possible. It requires a shift from 

from the “machine thinking” typical of ANN and GA procedures to the “propositional” and “fuzzy” 

thinking characteristic of real AI (Expert Systems). In the case in point, an application to a real 

compressor was implemented in [1]. The code performs satisfactorily also in the first stages of 

condition derangement.  

5. Conclusions 

The application of expert systems for energy conversion systems failure analysis has been 

proven to be a reliable and effective aid in dealing with large amount of data and complex fault 

chains, especially whenever it is essential to understand the consequential process and avoid 

expensive plant downtimes. 
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