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Abstract 

The applying of radical polymerization techniques is an important economic and theoretical 

task of chemical technology. Hence, the elaboration of the radical polymerization processes has 

both theoretical and practical significance. The ability of the CORAL software to build up robust 

models for transfer constants in radical polymerization is demonstrated.  The Monte Carlo 

technique is applied in the CORAL software as the principle of development of the models. For 

molecular fragments represented by simplified molecular input-line entry system (SMILES), 

correlation weights were selected that maximize the correlation coefficient between the logarithm of 

the chain transfer constants in radical polymerization log (1/Cs) and the descriptor calculated from 

the correlation weights for the training set (n = 25). This correlation was preserved for the external 

validation set in three optimization samples by the Monte Carlo method. 
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 Introduction 

The radical polymerization techniques are used to develop block copolymers, for optimization 

technological processes, as well as for the improvement of target transport of drugs in an organism 

[1]. 

Quantitative structure-property/activity relationships (QSPRs/QSARs) is a tool to predict the 

physicochemical behaviour of different substances including polymer systems [2,3]. The CORAL 

software (http://ww.insilico.eu/coral) is a tool to build up different QSPR/QSAR models [4-6]. 

It is known that the properties of polymers are determined not only by the chemical nature of 

the monomer units, but also by molecular weight characteristics, and often the optimal properties 

are manifested in a certain range of molecular weights (MM). Therefore, the important problem is 

the good regulation of the molecular characteristics of polymers in the synthesis process, which, 

within the framework of classical radical polymerization, can be carried out using chain transfer 

reactions to a specially introduced agent - regulator. Quantitatively, the activity of chain transfer 

agents is described by the chain transfer constant (Cs), which depends on the chemical structure of 

the monomer and the chain transfer agent. The determination of the chain transfer constant requires 

a sufficiently long experiment. In this regard, it is of interest to use new theoretical approaches to 

model the chain transfer constants based on information on the chemical structure of the reagents. 

In this regard, the use of the OSPR method-modeling for predicting the kinetic constants of 

polymerization based on information on the chemical structure of monomers and regulators presents 

a certain prospect [1, 2]. Earlier, we attempted to model the chain transfer constant using the 

optimization of the correlation weights of local graph invariants [2]. Computer experiments were 

conducted for 19 and 7 pairs of monomer - regulator for the training and control samples, 

respectively.  

The aim of the present study is the estimation of the ability of optimal descriptors [2,4-6] 

calculated with simplified molecular input-line entry system (SMILES) [7-9] to be a tool for 

prediction of log(1/Cs). 

 

2. Method 

2.1 Data 

Numerical data on Cs take in the literature [10, 11]. The 35 systems of “monomer-regulator” 

were taken from the above sources [10, 11]. These systems were randomly distributed to the 

training set (n=25) and test set (n=10).  

2.2 Optimal descriptor 
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The optimal descriptors is a class of the molecular descriptors calculated with correlation 

weights of various molecular features extracted from SMILES. The optimal descriptor used here is 

calculated as the following 

 

DCW = ∑ W(Sk)                                                     (1) 

 

The Sk is a fragment of SMILES. The W(Sk) is the correlation weight for the Sk. The numerical 

data for correlation weights are calculated by the Monte Carlo technique. These should provide a 

maximal value of the determination coefficient between the experimental and predicted log(1/Cs) 

for the training set: 

log(1/Cs) = C0  +  C1* DCW                                    (2) 

The statistical quality of the model calculated with Eq. 2 for the training set should be checked 

up with monomers from the test set. 

Monomers and regulators are listed in Table 1. SMILES are prepared by ChemSketch 

software [12]. 

 

3. Results and Discussion  

Table 2 contains the statistical characteristics of the model for three runs of the Monte Carlo 

optimization. One can see, the statistical quality of the model is good and reproducing for the above 

three runs. Table 3 contains numerical data on correlation weights used to calculations with Eq. 1. 

Table 4 contains an example of the DCW calculation with correlation weights obtained in the run 1.  

The model is the following:  

 

log(1/Cs) = 0.8489 + 0.1178 * DCW                (3) 

 

n=25, r2=0.8094, s=0.290, F=98 (training set) 

n=10, r2=0.8509, s=0.250, F=46 (test set) 

 

Table 5 contains the numerical data on the model. Figure 1 represents the model graphically.  

The predictive potential of the model confirmed by the high value of the concordance correlation 

coefficient that is equal to 0.895 [13] as well as by the high value of the index of ideality of 

correlation that is equal to 0.829 [14]. 

Previous researches dedicated to building up QSPR suitable for polymer objects were based 

on the representation of monomers via molecular graphs [15] whereas here SMILES has been 
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applied as an alternative of the graph. Taking into account the prevalence SMILES as a 

representation of the molecular structure, one can see the approach described here has defined 

advantages.  

 

4. Conclusions 

The optimal descriptors calculated according to the described scheme can be used to model the 

log (1 / Cs) chain transfer constants in radical copolymerization. The practicability of representation 

of the topological structure of monomers together with the topological structure of regulators in 

order to build up predictive models for polymer objects is confirmed. Last, but not least, SMILES 

can be an attractive alternative to a graph in the QSPR analysis of polymer objects.  

 

Acknowledgment 

AAT expresses gratitude the project LIFE-CONCERT contract (LIFE17 GIE/IT/000461) for the 

support.  

Disclosure statement 

     The authors reported no potential conflict of interest. 
      

 



 

7 
 

References  

[1] S. Oliver, L. Zhao, A.J. Gormley, R. Chapman, C. Boyer, Living in the Fast Lane - High 

Throughput Controlled/Living Radical Polymerization, Macromolecules, 52(1) (2019)  3-23. DOI: 

10.1021/acs.macromol.8b01864 

 [2] A.P. Toropova, A.A. Toropov, V.O. Kudyshkin, R. Rallo, Prediction of the Q-e parameters 

from structures of transfer chain agents, J. Polym. Res.  22 (7) (2015) 128. DOI: 10.1007/s10965-

015-0778-3 

[3] T. Zhu, W. Chen, H. Cheng, Y. Wang, R.P. Singh, Prediction of polydimethylsiloxane-water 

partition coefficients based on the pp-LFER and QSAR models, Ecotoxicol. Environ. Saf.  182 

(2019) 109374. DOI: 10.1016/j.ecoenv.2019.109374 

[4] S. Ahmadi, A. Akbari, Prediction of the adsorption coefficients of some aromatic compounds 

on multi-wall carbon nanotubes by the Monte Carlo method, SAR QSAR Environ. Res. 29(11) 

(2018) 895-909. DOI: 10.1080/1062936X.2018.1526821 

[5] Manisha, S. Chauhan, P. Kumar, A. Kumar, Development of prediction model for fructose- 

1,6- bisphosphatase inhibitors using the Monte Carlo method, SAR QSAR Environ. Res.  30(3) 

(2019) 145-159.  DOI: 10.1080/1062936X.2019.1568299 

[6] P.G.R. Achary, A.P. Toropova, A.A. Toropov, Combinations of graph invariants and 

attributes of simplified molecular input-line entry system (SMILES) to build up models for 

sweetness, Food Res. Int. 122 (2019) 40-46. https://doi.org/10.1016/j.foodres.2019.03.067  

[7] D. Weininger, SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules, J. Chem. Inf. Comput. Sci.   28 (1988) 31-36. 

https://doi.org/10.1021/ci00057a005 

[8] D. Weininger, A. Weininger, J.L. Weininger, SMILES. 2. Algorithm for generation of unique 

SMILES notation, J. Chem. Inf. Comput. Sci. 29 (1989) 97-101. 

https://doi.org/10.1021/ci00062a008 

[9] D. Weininger, Smiles. 3. Depict. Graphical depiction of chemical structures, J. Chem. Inf. 

Comput. Sci. 30 (1990) 237-243. https://doi.org/10.1021/ci00067a005 

[10] Reference book on polymer chemistry (in Russian) 

https://elib.pstu.ru/vufind/Record/RUPSTUbooks177494, Accessed October 1, 2019. 

[11] V.O. Kudyshkin, N.R. Vokhidova, N.I. Bozorov, O.E. Sidorenko, I.N. Ruban, N.L. 

Voropaeva, S.Sh. Rashidova, Use of allylbenzene and allyl phenyl ether as chain-transfer agents in 

radical polymerization, Russ. J. Appl. Chem. 77 (2004) 994-997. 

https://doi.org/10.1023/B:RJAC.0000044130.01483.f7 



 

8 
 

[12] ACD/ChemSketch Freeware, version 11.00 - Advanced Chemistry Development, Inc., 

Toronto, ON, Canada, www.acdlabs.com, 2007. 

[13] L. I-Kuei Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 

45 (1989) 255-268. https://www.jstor.org/stable/2532051 

[14] A.A.Toropov, A.P. Toropova,  The index of ideality of correlation: A criterion of predictive 

potential of QSPR/QSAR models? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 819 (2017) 31-

37. DOI: 10.1016/j.mrgentox.2017.05.008 

[15] A.A. Toropov, V.O. Kudyshkin, N.L. Voropaeva, I.N. Ruban, S.Sh. Rashidova, QSPR 

modeling of the reactivity parameters of monomers in radical copolymerizations, J. Struct. Chem. 

45 (2004) 945-950. https://doi.org/10.1007/s10947-005-0084-8 

 

 



 

9 
 

Table 1 Numerical data on Cs taken in the literature [10,11] 

 

ID Monomer Regulator Cs 

1 CH2 CH

C N
 

N
CH3

CH3  

0.0708 

2 CH2 CH

C N
 

N
C2H5

C2H5  

0.0359 

3 CH2 CH

C N
 

CH3 C

O

N
CH3

CH3  

0.000505 

4 CH2 CH

C N
 

CH3

N
CH3

CH3

 

0.0334 

5 CH2 CH

C N
 

N C

H

O
H3C

H3C
 

0.001 

6 CH2 CH

C N
 

NH2

 

0.0044 

7 

CH3 CH2 CH2 CH2 O C

O

CH CH2  
N

CH3

CH3  

0.038 

8 

CH3 CH2 CH2 CH2 O C

O

C

CH3

CH2  

CH2 CH CH2

 

0.073 

9 

CH3 CH2 CH2 CH2 O C

O

C

CH3

CH2  

O CH2 CH CH2

 

0.035 

10 CH2 CH

Cl  
N

CH3

CH3  

0.27 

11 CH2 CH

Cl  
CH3 C

O

H  

0.011 
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12 CH2 CH

Cl  

C12H25 O CH CH2  
0.0156 

13 

CH2 CH O C

O

CH3  
N

CH3

CH3  

0.026 

14 

CH2 CH O C

O

CH3  
C

O

Cl  

0.0366 

15 

CH2 CH O C

O

CH3  
CH3 CH2 O C

O

C

CH3

H

CH3

 

0.016 

16 

CH2 CH O C

O

CH3  

C11H23 C

O

O CH2 CH3

 

0.0105 

17 

CH2 CH O C

O

CH3  
C O CH2 CH3

O

C13H27  

0.014 

18 

CH2 CH O C

O

CH3  

CH3 NH2

 

0.075 

19 

CH2 CH O C

O

CH3  
CH3 N

CH3

CH3

 

0.038 

20 

CH2 CH O C

O

CH3  
CH3 N

H

CH3

 

0.083 

21 

CH2 CH O C

O

CH3  
N

C2H5

C2H5

H5C2

 

0.036 

22 

CH2 CH O C

O

CH3  

OH

 

0.012 

23 

CH2 CH C

O

O CH3  

CH2 CH CH2

 

0.014 

24 

CH2 CH C

O

O CH3  

O CH2 CH CH2

 

0.011 

25 

CH2 CH O C

O

CH3   

0.1457 
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26* 
CHCH2

 
N

CH3

CH3  

0.0053 

 

27 
CHCH2

 
CH2 CH CH2

 

0.084 

28 
CHCH2

 
O CH2 CH CH2

 

0.048 

29 CH2 CH

CH2 CH2

CN O
H2C

 

CH2 CH CH2

 

0.078 

30 CH2 CH

H2C

H2C CH2

C
N

O

 

O CH2 CH CH2

 

0.036 

31 CH2 CH

CH2

CH2

CH2 CH2

CH2

C
N

O

 

CH2 CH CH2

 

0.37 

32 CH2 CH

CH2

CH2

CH2 CH2

CH2

C
N

O

 

O CH2 CH CH2

 

0.295 

33 

CH2 CH C

O

O CH3  

H3C

NO2  

0.00412 

34 

CH2 CH C

O

O CH3  

H3C NO2

 

0.00486 

35 

CH2 CH C

O

O CH3  
NO2

HO

 

0.00562 
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36 

CH2 CH C

O

O CH3  

HO NO2

 

0.00426 

*) outlier 

 

 

 

 

 

 



 

13 
 

 

Table 2  The statistical quality of models calculated with Eq. 2 

 

 Training set, n=25 Test set, n=10 

Run r2 s F r2 s F 

1 0.8094 0.290 98 0.8509 0.250 46 

2 0.8064 0.292 96 0.8560 0.246 48 

3 0.8103 0.290 98 0.8484 0.252 45 

Average 0.8087 0.291 97 0.8518 0.249 46 
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Table 3 Correlation weights for three runs of the Monte Carlo optimization 

 

Promoters for log(1/Cs)  Sk   W(Sk)  
run 1 

W(Sk)   
run 2 

W(Sk)  
run 3 

increase      

 # 5.8018 6.6609 5.2256 

 + 0.3449 1.1372 1.3606 

 - 0.3911 0.9293 0.7507 

 . 4.7479 2.9346 2.7729 

 = 4.1671 4.6296 3.9259 

 N 0.8395 0.9611 0.9045 

 O 0.7282 0.8522 0.7168 

 [ 0.6045 0.3190 0.2137 

 c 0.4581 0.5024 0.4555 

decrease     

 ( -0.8366 -0.8778 -0.8215 

 1 -4.0206 -4.2513 -3.9007 

 2 -3.9925 -4.1779 -3.8288 

 Cl -2.0521 -1.7040 -2.0528 

 C -0.3957 -0.4225 -0.3778 
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Table 4   An example of the DCW calculation (run 1) 

SMILES = "C=CC#N.CN(C)c1ccccc1" 

DCW=7.4515977 

Sk W(Sk) 

C -0.3957 

= 4.1671 

C -0.3957 

C -0.3957 

# 5.8018 

N 0.8395 

. 4.7479 

C -0.3957 

N 0.8395 

( -0.8366 

C -0.3958 

( -0.8366 

c 0.4581 

1 -4.0206 

c 0.4581 

c 0.4581 

c 0.4581 

c 0.4581 

c 0.4581 

1 4.0206 
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Table 5 Experimental and calculated with Eq. 3 log(1/Cs) 

 

ID SMILES DCW log(1/Cs) 

experiment 

log(1/Cs) 

predicted 

Training set 

1 C=CC#N.CN(C)c1ccccc1 7.4516 1.150 1.727 

2 C=CC#N.CN(C)c1ccccc1 7.4516 1.445 1.727 

3 C=CC#N.CN(C)C(C)=O 15.1746 3.297 2.636 

5 C=CC#N.CN(C)C=O 17.2435 3.000 2.880 

7 C=CC(=O)OCCCC.CN(C)c1ccccc1 3.1777 1.420 1.223 

8 C=CC(=O)OCCCC.C=CCc1ccccc1 7.7828 1.137 1.766 

10 C=CCl.CN(C)c1ccccc1 -0.8460 0.569 0.749 

11 C=CCl.CC=O 10.1753 1.959 2.048 

12 C=CCl.C=COCCCCCCCCCCCC 5.4266 1.807 1.488 

13 CC(=O)OC=C.CN(C)c1ccccc1 4.3649 1.585 1.363 

14 CC(=O)OC=C.ClC(=O)c1ccccc1 6.7643 1.437 1.646 

15 CC(=O)OC=C.CC(C)(C)C(=O)OCC 9.1163 1.796 1.923 

17 CC(=O)OC=C.O=C(CCCCCCCCCCCCC)OCC 8.9011 1.854 1.897 

19 CC(=O)OC=C.Cc1ccc(cc1)N(C)C 2.2960 1.420 1.119 

21 CC(=O)OC=C.CCN(CC)CC 8.0744 1.444 1.800 

22 CC(=O)OC=C.Oc1ccccc1 6.7182 1.921 1.640 

23 C=CC(=O)OC.C=CCc1ccccc1 8.9699 1.854 1.906 

24 C=CC(=O)OC.C=CCOc1ccccc1 9.6981 1.959 1.991 

25 CC(=O)OC=C.c1cccc2ccccc12 -0.1624 0.837 0.830 

27 C=Cc1ccccc1.C=CCc1ccccc1 0.5187 1.076 0.910 

28 C=Cc1ccccc1.C=CCOc1ccccc1 1.2469 1.319 0.996 

29 O=C1CCCN1C=C.C=CCc1ccccc1 1.9217 1.108 1.075 

31 CCN1CCCCCC1=O.C=CCc1ccccc1  -3.0368 0.432 0.491 

33 C=CC(=O)OC.Cc1cc(ccc1)[N+](=O)[O-] 11.8650 2.385 2.247 

35 C=CC(=O)OC.O=[N+]([O-])c1cccc(O)c1 12.9889 2.250 2.379 

Test set 

4 C=CC#N.Cc1ccccc1N(C)C 7.0559 1.476 1.680 
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6 C=CC#N.Nc1ccccc1 9.9162 2.357 2.017 

9 C=CC(=O)OCCCC.C=CCOc1ccccc1 8.5110 1.456 1.851 

16 CC(=O)OC=C.O=C(CCCCCCCCCCC)OCC 9.6926 1.979 1.991 

18 CC(=O)OC=C.Cc1ccc(N)cc1 4.7606 1.125 1.410 

20 CC(=O)OC=C.Cc1ccc(NC)cc1 4.3649 1.081 1.363 

30 O=C1CCCN1C=C.C=CCOc1ccccc1 2.6499 1.444 1.161 

32 CCN1CCCCCC1=O.C=CCOc1ccccc1 -2.3086 0.530 0.577 

34 C=CC(=O)OC.Cc1ccc(cc1)[N+](=O)[O-] 11.8650 2.313 2.247 

36 C=CC(=O)OC.O=[N+]([O-])c1ccc(O)cc1 12.9889 2.371 2.379 
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Figure 1 Graphical representation of model calculated with Eq. 3 


