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Abstract: The step-size parameter and the equalizer’s tap length are the system parameters in the
blind adaptive equalization design. Choosing a large step-size parameter causes the equalizer to
converge faster compared with applying a smaller value for the step size parameter. But, a higher
step-size parameter leaves the system with a higher residual inter-symbol-interference (ISI) than does
a lower step-size parameter. The equalizer’s tap length should be set large enough to compensate for
the channel distortions. But, since the channel parameters are unknown, the required equalizer’s
tap length is also unknown. The system parameters are usually designed via simulation trials, in
such a way that the equalizer’s performance from the residual ISI point of view reaches a system
desired residual ISI level. Recently, a closed-form approximated expression was derived for the
residual ISI as a function of the system parameters, input sequence statistics and channel power.
This expression was obtained under the assumption having a value for the equalizer’s tap length
that is sufficient to compensate for the channel distortions. Based on this approximated expression,
the outcome from the step-size parameter multiplied by the equalizer’s tap length can be derived
when the residual ISI is given. But, by choosing a step-size parameter, we automatically have also
the value for the equalizer’s tap length which might now not be large enough to compensate for
the channel distortions and thus leaving the system with a higher residual ISI than the required one.
In this work, we derive an expression that sets a condition on the equalizer’s tap length based on
the input sequence statistics, on the chosen equalizer’s characteristics and required residual ISI. In
addition, highlights are supplied on how to set the equalizer’s tap length for different channel cases
based on this new derived expression. The findings are accompanied by simulation results.

Keywords: blind adaptive equalizer; Inter-Symbol-Interference; equalizer’s tap length; blind adaptive
deconvolution

1. Introduction

In this work we consider the blind adaptive equalization (blind adaptive deconvolution) problem
[1–19]. For a blind adaptive equalizer, the system designer needs to know how to choose correctly the
step-size parameter and the equalizer’s tap length in order to obtain a system required residual ISI.
According to [1], a higher value for the step-size parameter leads the equalizer entering the convergence
state faster than for a lower step-size parameter. But, a higher value for the step-size parameter will
leave the system with a higher residual ISI compared with a lower value for the step-size parameter [1].
A higher residual ISI may lead to a higher symbol error rate [20] which may no longer answer on the
system’s requirements. In addition, a too high value for the step-size parameter may lead the equalizer
to disconverge. The equalizer’s tap length should be set large enough to compensate for the channel
distortions. But, since the channel characteristics are practically unknown to the system designer, the
required equalizer’s tap length is also unknown. It could be thought that choosing a very large value
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for the equalizer’s tap length is the right thing to do. But, according to [1], setting the value for the
equalizer’s tap length too high, leads the system to a higher residual ISI than for setting the equalizer’s
tap length with a lower value but with a value which still can compensate for the channel distortions.
Usually, the step-size parameter and the equalizer’s tap length are obtained via simulation trials where
the whole system with the equalizer is simulated. Obviously, the simulation trials waste a lot of time in
the general system design. Recently ([1,21]), a closed-form approximated expression was derived for
the achievable residual ISI case that depends on the step-size parameter, equalizer’s tap length, input
signal statistics, signal-to-noise ratio (SNR), the chosen equalization method and channel power. This
closed- form approximated expression for the residual ISI is applicable for blind adaptive equalizers
where the error signal that participates in the update mechanism of the equalizer’s coefficients is a
polynomial function of order up to three of the equalized sequence as it is in the case of Godard’s
[2] algorithm. Based on this closed-form approximated expression for the residual ISI, the system
designer has on hand the value for the step-size parameter multiplied by the equalizer’s tap length for
a given residual ISI level. Both the closed-form approximated expressions for the residual ISI in [1]
and [21] assumed to have a value for the equalizer’s tap length that is sufficient to compensate for the
channel distortions. Thus, having the outcome of the step-size parameter multiplied by the equalizer’s
tap length for a given residual ISI level is not enough for setting practical values for both the step-size
parameter and equalizer’s tap length since by setting a high value for the step-size parameter for fast
convergence might obtain to a value for the equalizer’s tap length that might not be able anymore to
compensate for the channel distortions. In this work, we solve the problem of how to set correctly
the equalizer’s tap length based on a new derived expression that sets a condition on the equalizer’s
tap length. This new expression is based on the input sequence statistics, on the chosen equalizer’s
characteristics and required residual ISI and is applicable for blind adaptive equalizer’s where the
error signal that participates in the update mechanism of the equalizer’s coefficients is a polynomial
function of order up to three of the equalized sequence. Simulation results confirm our findings.

2. Methods

In this section, we present the condition on the equalizer’s tap-length for the noiseless case.
Let us consider the following system (Figure 1 recalled from [22]), where we make the following
assumptions according to [22]:
1. The input sequence x[n] can be written as x[n] = xr[n] + jxi[n] where xr[n] and xi[n] are the real
and imaginary parts of x[n] respectively. xr[n] and xi[n] are independent, E[x[n]x∗[n]] = σ2

x and
E[x[n]] = 0 (where E[(·)] stands for the expectation operator on (·) and ()∗ is the conjugate operation
on ()). In addition: E[x2

i [n]] = σ2
xi

, E[x2
r [n]] = σ2

xr , E[xG
i [n]] = E[xG

r [n]] where G is a positive and even
integer.
2. The unknown channel h[n] is a possibly nonminimum phase linear time-invariant filter in which the
transfer function has no "deep zeros"; namely, the zeros lie sufficiently far from the unit circle.
3. The filter c[n] is a tap-delay line.
4. w[n] = 0
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Figure 1. Block diagram of the system.

The equalized output sequence can be written as:

z[n] = y[n] ∗ c[n] = (x[n] ∗ h[n]) ∗ c[n] = x[n] ∗ (δ [n] + ξ [n]) = x[n] + x[n] ∗ ξ [n] = x[n] + p[n] (1)

with
p[n] = x[n] ∗ ξ [n] ; h[n] ∗ c[n] = δ [n] + ξ [n] (2)

where "∗" stands for the convolutional operation, ξ[n] stands for the difference (error) between the
ideal and the used value for c[n] following (3) and δ is the Kronecker delta function. The equalizer’s
coefficients are updated according to [23]:

c[n + 1] = c[n]− µ
∂F[n]
∂z[n]

y∗[n] (3)

where µ is the step-size parameter, F[n] is the cost function and c[n] is the equalizer vector where the
input vector is y[n] = [y[n]...y[n− N + 1]]T . The operator ()T denotes for transpose of the function ()

and N is the equalizer’s tap length. In [1], a closed-form approximated expression was derived for
the residual inter-symbol-interference (ISI) applicable for a blind adaptive equalizer where the cost
function F[n] is a polynomial function of the equalized output sequence of order up to three:

ISI = 10 log10
(
mp
)
− 10 log10

(
σ2

xr

)
(4)

where E[p2
r [n]] = mp, (p[n] = pr[n] + jpi[n]) and mp is obtained by:

mp = min
[
Solmp1

1 , Solmp1
2

]
for Solmp1

1 > 0 and Solmp1
2 > 0

or

mp = max
[
Solmp1

1 , Solmp1
2

]
for Solmp1

1 · Solmp1
2 < 0

where

Solmp1
1 =

−B1+
√

B2
1−4A1C1B

2A1
; Solmp1

2 =
−B1−

√
B2

1−4A1C1B
2A1

(5)

A1 =
(

B
(
45σ2

xr a2
3 + 18σ2

xr a3a12 + 6a1a3 + 9σ2
xr a2

12 + 2a1a12
)
− 2 (3a3 + a12)

)
B1 =

(
B
(

12
(
σ2

xr

)2 a3a12 + 6
(
σ2

xr

)2 a2
12 + 12σ2

xr a1a3 + 4σ2
xr a1a12 + a2

1 + 15E
[
x4

r
]

a2
3+

2E
[
x4

r
]

a3a12 + E
[
x4

r
]

a2
12
)
− 2

(
a1 + 3σ2

xr a3 + σ2
xr a12

))
C1 =

(
2
(
σ2

xr

)2 a1a12 + σ2
xr a2

1 + 2E
[
x4

r
]

σ2
xr a3a12 + E

[
x4

r
]

σ2
xr a2

12 + 2E
[
x4

r
]

a1a3 + E
[
x6

r
]

a2
3

)
B = µNσ2

x ∑k=R−1
k=0 |hk [n]|2

(6)
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R is the channel length, xr = xr[n] and a1, a12, a3 are properties of the chosen equalizer and found by:

Re
(

∂F (n)
∂z (n)

)
=
(

a1 (zr) + a3 (zr)
3 + a12 (zr) (zi)

2
)

(7)

where Re(·) is the real part of (·) and zr, zi are the real and imaginary parts of the equalized output
z[n] respectively. In this paper we use Godard’s algorithm [2]. Thus we have:

∂F[n]
∂z[n]

=

|z[n]|2 − E
[
|x[n]|4

]
E
[
|x[n]|2

]
 z[n] (8)

where | () | stands for the absolute value of (). Please note that for Godard’s algorithm [2] we have
that:

a3 = a12 = 1; a3 = −
E
[
|x[n]|4

]
E
[
|x[n]|2

] (9)

According to [1], when the convolutional noise power mp is a very small value, the solution for
mp may be given by: mp ∼= −C1B

B1
. Obviously, this solution for mp is less accurate compared to the

solution derived from (5). It should be pointed out that the step-size parameter µ and the equalizer’s
tap length N are associated with the function B (6). Thus, if the desired residual ISI is set in (5), we
may derive the expected value for B (6) and thus design the system parameters (µ and N). But, via the
function B (6), we have only the outcome of µN. Thus, if we set a value for the step-size parameter,
we also have set automatically a value for the equalizer’s tap length via µN. But, this value N, may
not be large enough to compensate for the channel distortions. For example, Figure 2 describes the
equalizer’s performance from the residual ISI point of view as a function of the iteration number for
Godard’s [2] algorithm, for µ = 0.00003 and for N = 13. Figure 3 describes the equalized constellation
output for the 16QAM (Quadrature Amplitude Modulation) input source (a modulation using ± {1,3}
levels for in-phase and quadrature components) for µ = 0.00003 and N = 13. According to Figure
2, the residual ISI at the convergence state is approximately −22 [dB]. The calculated value for B is
B = 0.0039 where the channel is defined as:
CH1 (initial ISI=0.88): The channel parameters are determined according to [1]:

h[n] = [0.4851,−0.72765,−0.4851] where ∑k=R−1
k=0 |hk [n]|2 ' 1.

Next, according to (6), µN = B/
(

σ2
x ∑k=R−1

k=0 |hk [n]|2
)
= 0.00039 since σ2

x = 10 for the 16QAM
input sequence. Now, the value of 0.00039 for µN can also be obtained approximately by using
µ = 0.000056 with N = 7 or by using µ = 0.000078 with N = 5. Figures 4 and 5 describe the
equalizer’s performance from the residual ISI point of view as a function of the iteration number for
Godard’s [2] algorithm, for µ = 0.000056 with N = 7 and for µ = 0.000078 with N = 5 respectively.
Figure 6 describes the equalized constellation output for the 16QAM input source for µ = 0.000078
and N = 5. Please note that for the three cases: case1 where µ = 0.00003 with N = 13, case2 where
µ = 0.000056 with N = 7 and case3 where µ = 0.000078 with N = 5, the value for B is approximately
the same. Thus, the equalizer’s performance should have been the same for the three cases. But, this
is not what we received. According to Figures 4 and 5, the residual ISI at the convergence state is
higher than −22 [dB] which implies having some degradation in the equalization performance from
the residual ISI point of view. In addition, according to Figure 6, the equalized constellation output is
not clear as it is in Figure 3. As a matter of fact, Figure 6 implies that the system suffers from a higher
symbol error rate compared to the results from Figure 3. The explanation for not having the same
equalization performance for the three cases may be due to the fact that the equalizer’s tap length is not
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long enough to compensate for the channel distortions. Thus, it is important to have an additional tool
that can indicate something on the required equalizer’s tap length that has to be used in the system.
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Figure 2. Equalizer’s performance from the residual ISI point of view for µ = 0.00003 and N = 13
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Figure 3. Equalized Constellation output for µ = 0.00003 and N = 13.
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Figure 4. Equalizer’s performance from the residual ISI point of view for µ = 0.000056 and N = 7



Eng. Proc. 2020, xx>0 0xx , 5 6 of 16

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iteration Number

-16

-14

-12

-10

-8

-6

-4

-2

0

IS
I 
[d

B
]

Figure 5. Equalizer’s performance from the residual ISI point of view for µ = 0.000078 and N = 5
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Figure 6. Equalized Constellation output for µ = 0.000078 and N = 5

Theorem 1. The equalizer’s tap length should be set according to:

N >>
∣∣∣V2

V1

∣∣∣
with

V1 = −6a3m2
p − 2a12m2

p − 2a1mp − 6σ2
xr a3mp − 2σ2

xi
a12mp

V2 = 3σ2
xr a3mp − 3

E[x4
r ]

σ2
xr

a3mp

(10)
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Proof of Theorem 1. The expression for mp was obtained in [1] via the following expression [1]:

E
[
∆p2

r
]
' −2

(
a33m2

p + a12m2
p + a12mpσ2

xi
+ 3a3E

[
p2

r x2
r
]
+ a1mp

)
B + B2B̃

B̃ = 15m3
pa2

3 + 2a3a123m3
p + 2a1a33m2

p + 15a2
3E
[
x2

r p4
r
]

+2a3a123m2
pσ2

xi
+ a2

123m3
p + 2a1a12m2

p

+12a3a12E
[
x2

r p2
r
]

mp + 6a2
12mpE

[
x2

i p2
i
]
+ a2

1mp

+12a1a3E
[
x2

r p2
r
]
+ 2a1a12mpσ2

xi
+ 15a2

3E
[
x4

r p2
r
]

+ 12a3a12E
[
x2

r p2
r
]

σ2
xi
+ a2

12mpE
[
x4

i
]
+ a2

123m2
pσ2

xr

+2a1a12mpσ2
xr + 2a3a12mpE

[
x4

r
]
+ 6a2

12E
[
x2

i p2
i
]

σ2
xr

+a2
1σ2

xr + 2a1a3E
[
x4

r
]
+ 2a1a12σ2

xi
σ2

xr + a2
3E
[
x6

r
]
+ 2a3a12σ2

xi
E
[
x4

r
]
+ a2

12E
[
x4

i
]

σ2
xr

(11)

where E
[
∆p2

r
]
= E

[
p2

r [n + 1]
]
− E

[
p2

r [n]
]
. Please note that E

[
∆p2

r
]

was set to zero in [1] since at the
convergence state, the variance of the convolutional noise at time index n and n + 1 are approximately
the same. In addition, the following approximations were done in [1] :

E[p2
r x2

r ] = E[p2
i x2

i ] ' mpσ2
xr

E[x2
r p4

r ] ' 3σ2
xr m2

p

E[x4
r p2

r ] ' E
[
x4

r
]

mp

(12)

But, according to (2), xr and pr are related. Thus, more accurate expressions for (12) can be
obtained. In this work, we also use (11) with E

[
∆p2

r
]
= 0. But unlike the author in [1], we do not use

the assumptions of (12). In this work, we derive new expressions for E[p2
r x2

r ], E[x2
r p4

r ] and E[x4
r p2

r ]. In
order to do this, we need first to see the connection between mp and E[ξ2

r [n]] where ξr[n] is the real
part of ξ[n]. In the following we denote ξ[n] as ξ. Based on (2), we may write:

pr[n] = Re

[
∑
k
(xr [n− k] + jxi [n− k]) (ξr [k] + jξi [k])

]
= ∑

k
xr [n− k] ξr [k]−∑

k
xi [n− k] ξi [k]

(13)
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where ξ [n] = ξr [n] + jξi [n]. By using (13) we may write:

E
[
p2

r
]
= E

[(
∑k,r −∑k,i

) (
∑m,r −∑m,i

)]
= E

[
∑k,r ∑m,r +∑k,i ∑m,i

]
=

Nσ2
xr E
[
ξ2

r
]
+ Nσ2

xi
E
[
ξ2

i
]
= 2Nσ2

xr E
[
ξ2

r
]
= mp

where

∑k,r = ∑k xr [n− k] ξr [k] ; ∑k,i = ∑k xi [n− k] ξi [k]

E
[
∑k,r ∑m,r

]
= ∑k ∑m xr [n− k] xr [n−m] ξr [k] ξr [m] = ∑k x2

r [n− k] ξ2
r [k] = Nσ2

xr E
[
ξ2

r
]

E
[
∑k,i ∑m,i

]
= ∑k ∑m xi [n− k] xi [n−m] ξi [k] ξi [m] = ∑k x2

i [n− k] ξ2
i [k] = Nσ2

xi
E
[
ξ2

i
]

E
[
ξ2

r
]
= E

[
ξ2

i
]

(14)

Based on (14) we have:

E
[
ξ2

r

]
=

mp

2Nσ2
xr

(15)

Next, we turn to derive the expression for E
[
x4

r p2
r
]
:

E
[
x4

r p2
r
]
= E

[
x4

r
(
∑k,r ∑m,r +∑k,i ∑m,i

)]
= E

[
x4

r ∑k,r ∑m,r
]
+ E

[
x4

r
]

E
[
∑k,i ∑m,i

]
=

(N − 1) σ2
xr E
[
x4

r
]

E
[
ξ2

r
]
+ E

[
x6

r
]

E
[
ξ2

r
]
+ E

[
x4

r
]

Nσ2
xi

E
[
ξ2

i
]

where

E
[
x4

r ∑k,r ∑m,r
]
= E

[
∑k ∑m x4

r [n] xr [n− k] xr [n−m] ξr [k] ξr [m]
]
= E (∑k=m)k 6=0 + E ∑k=m=0

E (∑k=m)k 6=0 = (N − 1) σ2
xr E
[
x4

r
]

E
[
ξ2

r
]

E ∑k=m=0 = E
[
x6

r
]

E
[
ξ2

r
]

E
[
x4

r
]

E
[
∑k,i ∑m,i

]
= E

[
x4

r
]

Nσ2
xi

E
[
ξ2

i
]

(16)
Based on (15) and (16) we have:

E
[

x4
r p2

r

]
= E

[
x4

r

]
mp − E

[
x4

r

] mp

2N
+ E

[
x6

r

] mp

2Nσ2
xr

(17)
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Now, in order to derive the expression for E
[
x2

r p4
r
]
, we need first to get the relationship between

E
[
p4

r
]

and E
[
ξ4

r
]
. By using (13) and (15), we may write:

E
[
p4

r
]
= E

[
∑k,r ∑m,r ∑s,r ∑t,r

]
+ E

[
∑k,i ∑m,i ∑s,i ∑t,i

]
+ E

[
∑k,r ∑m,r ∑s,i ∑t,i

]
+ E

[
∑k,i ∑m,i ∑s,r ∑t,r

]
+

E
[
∑k,r ∑s,r ∑m,i ∑t,i

]
+ E

[
∑k,i ∑s,i ∑m,r ∑t,r

]
+ E

[
∑k,r ∑t,r ∑m,i ∑s,i

]
+ E

[
∑k,i ∑t,i ∑m,r ∑s,r

]
=

2NE
[
ξ4

r
]

E
[
x4

r
]
+ 3 (N − 1)

m2
p

2N + 6
m2

p
4 = 3m2

p

where

E
[
∑k,i ∑m,i ∑s,i ∑t,i

]
= E

[
∑k,r ∑m,r ∑s,r ∑t,r

]
=

E [∑k ∑m ∑t ∑s xr [n− k] xr [n−m] xr [n− t] xr [n− s] ξr [k] ξr [m] ξr [t] ξr [s]] =

E ∑k=m=t=s +E (∑k=m ∑t=s)k 6=t + E (∑k=t ∑m=s)k 6=s + E (∑k=s ∑m=t)k 6=m =

NE
[
ξ4

r
]

E
[
x4

r
]
+ 3 (N − 1) Nσ2

xr σ2
xr E
[
ξ2

r
]

E
[
ξ2

r
]
=

NE
[
ξ4

r
]

E
[
x4

r
]
+ 3 (N − 1)

m2
p

4N

and

E ∑k=m=t=s = NE
[
ξ4

r
]

E
[
x4

r
]

E (∑k=m ∑t=s)k 6=t = E (∑k=t ∑m=s)k 6=s = E (∑k=s ∑m=t)k 6=m = (N − 1) Nσ2
xr σ2

xr E
[
ξ2

r
]

E
[
ξ2

r
]

and where

E
[
∑k,r ∑m,r ∑s,i ∑t,i

]
= E

[
∑k,r ∑m,r

]
E
[
∑s,i ∑t,i

]
= Nσ2

xr E
[
ξ2

r
]

Nσ2
xi

E
[
ξ2

i
]
= Nσ2

xr

mp

2Nσ2
xr

Nσ2
xi

mp

2Nσ2
xr

=
m2

p
4

E
[
∑k,r ∑m,r ∑s,i ∑t,i

]
= E

[
∑k,i ∑m,i ∑s,r ∑t,r

]
= E

[
∑k,r ∑s,r ∑m,i ∑t,i

]
=

E
[
∑k,i ∑s,i ∑m,r ∑t,r

]
= E

[
∑k,r ∑t,r ∑m,i ∑s,i

]
= E

[
∑k,i ∑t,i ∑m,r ∑s,r

]
(18)

Now by using (18) we may write:

E
[
ξ4

r

]
=

3m2
p

4N2E [x4
r ]

(19)
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Next we turn to derive the expression for E
[
x2

r p4
r
]
. By using (13), (15) and (19) we have:

E
[
x2

r p4
r
]
= E

[
x2

r ∑k,r ∑m,r ∑s,r ∑t,r
]
+ E

[
x2

r ∑k,i ∑m,i ∑s,i ∑t,i
]
+ E

[
x2

r ∑k,r ∑m,r ∑s,i ∑t,i
]
+

E
[
x2

r ∑k,i ∑m,i ∑s,r ∑t,r
]
+ E

[
x2

r ∑k,r ∑s,r ∑m,i ∑t,i
]
+ E

[
x2

r ∑k,i ∑s,i ∑m,r ∑t,r
]
+

E
[
x2

r ∑k,r ∑t,r ∑m,i ∑s,i
]
+ E

[
x2

r ∑k,i ∑t,i ∑m,r ∑s,r
]
=

E
[
x6

r
] 3m2

p

4N2E[x4
r ]
+ σ2

xr 3m2
p + 3E

[
x4

r
] m2

p

Nσ2
xr
− 3E

[
x4

r
] m2

p

2N2σ2
xr
− 3

N σ2
xr m2

p +
3

4N2 σ2
xr m2

p

where

E
[
x2

r ∑k,r ∑m,r ∑s,r ∑t,r
]
= E

[
∑k ∑m ∑t ∑s xr [n− k] xr [n−m] xr [n− t] xr [n− s] x2

r [n] ξr [k] ξr [m] ξr [t] ξr [s]
]
=

E ∑k=m=t=s +E (∑k=m ∑t=s)k 6=t + E (∑k=t ∑m=s)k 6=s + E (∑k=s ∑m=t)k 6=m =

(N − 1) E
[
x4

r
]

σ2
xr E
[
ξ4

r
]
+ E

[
x6

r
]

E
[
ξ4

r
]
+ 3 (N − 2) (N − 1) σ2

xr σ2
xr σ2

xr E
[
ξ2

r
]

E
[
ξ2

r
]
+

(3) 2 (N − 1) σ2
xr E
[
x4

r
]

E
[
ξ2

r
]

E
[
ξ2

r
]

and

E ∑k=m=t=s = (N − 1) E
[
x4

r
]

σ2
xr E
[
ξ4

r
]
+ E

[
x6

r
]

E
[
ξ4

r
]

E (∑k=m ∑t=s)k 6=t = (N − 2) (N − 1) σ2
xr σ2

xr σ2
xr E
[
ξ2

r
]

E
[
ξ2

r
]
+ 2 (N − 1) σ2

xr E
[
x4

r
]

E
[
ξ2

r
]

E
[
ξ2

r
]

E (∑k=m ∑t=s)k 6=t = E (∑k=t ∑m=s)k 6=s = E (∑k=s ∑m=t)k 6=m

and where

E
[
x2

r ∑k,i ∑m,i ∑s,i ∑t,i
]
= E

[
x2

r
]

E
[
∑k,i ∑m,i ∑s,i ∑t,i

]
= E

[
x2

r
] (

NE
[
ξ4

i
]

E
[
x4

i
]
+ 3 (N − 1)

m2
p

4N

)
=

E
[
x2

r
] (

N
3m2

p

4N2E[x4
r ]

E
[
x4

i
]
+ 3 (N − 1)

m2
p

4N

)
= E

[
x2

r
] ( 3m2

p
4N + 3 (N − 1)

m2
p

4N

)
= σ2

xr

3m2
p

4

E
[
x2

r ∑k,r ∑m,r ∑s,i ∑t,i
]
= E

[
x2

r ∑k,r ∑m,r
]

E
[
∑s,i ∑t,i

]
=

Nσ2
xi

E
[
ξ2

i
] (

(N − 1) σ2
xr σ2

xr E
[
ξ2

r
]
+ E

[
x4

r
]

E
[
ξ2

r
])

=

Nσ2
xi

mp

2Nσ2
xr

(
(N − 1) σ2

xr σ2
xr

mp

2Nσ2
xr
+ E

[
x4

r
] mp

2Nσ2
xr

)
=

mp
2

(
(N − 1) σ2

xr

mp
2N + E

[
x4

r
] mp

2Nσ2
xr

)
where

E
[
x2

r ∑k,r ∑m,r
]
= E

[
∑k ∑m x2

r [n] xr [n− k] xr [n−m] ξr [k] ξr [m]
]
= E (∑k=m)k 6=0 + E ∑k=m=0

E (∑k=m)k 6=0 = (N − 1) σ2
xr σ2

xr E
[
ξ2

r
]

; E ∑k=m=0 = E
[
x4

r
]

E
[
ξ2

r
]

; E
[
∑s,i ∑t,i

]
= Nσ2

xi
E
[
ξ2

i
]

and

E
[
x2

r ∑k,r ∑m,r ∑s,i ∑t,i
]
= E

[
x2

r ∑k,i ∑m,i ∑s,r ∑t,r
]
= E

[
x2

r ∑k,r ∑s,r ∑m,i ∑t,i
]
=

E
[
x2

r ∑k,i ∑s,i ∑m,r ∑t,r
]
= E

[
x2

r ∑k,r ∑t,r ∑m,i ∑s,i
]
= E

[
x2

r ∑k,i ∑t,i ∑m,r ∑s,r
]

(20)
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Next we turn to derive the expression for E
[
x2

r p2
r
]
. By using (13), (14), (15) we may write:

E
[
x2

r p2
r
]
= E

[
x2

r ∑k,r ∑m,r
]
+ E

[
x2

r
]

E
[
∑k,i ∑m,i

]
=

σ2
xr mp − σ2

xr

mp
2N + E

[
x4

r
] mp

2Nσ2
xr

where

E
[
x2

r
]

E
[
∑k,i ∑m,i

]
= σ2

xr Nσ2
xi

E
[
ξ2

i
]
= σ2

xr Nσ2
xi

mp

2Nσ2
xr

= σ2
xi

mp
2

E
[
x2

r ∑k,r ∑m,r
]
= E

[
∑k ∑m x2

r [n] xr [n− k] xr [n−m] ξr [k] ξr [m]
]
= E (∑k=m)k 6=0 + E ∑k=m=0 =

(N − 1) σ2
xr σ2

xr E
[
ξ2

r
]
+ E

[
x4

r
]

E
[
ξ2

r
]
= (N − 1) σ2

xr

mp
2N + E

[
x4

r
] mp

2Nσ2
xr

and

E (∑k=m)k 6=0 = (N − 1) σ2
xr σ2

xr E
[
ξ2

r
]

; E ∑k=m=0 = E
[
x4

r
]

E
[
ξ2

r
]

(21)
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Now we substitute the expressions for E
[
p2

r x2
r
]

(21), E
[
x2

r p4
r
]

(20), E
[
x4

r p2
r
]

(17) and E
[
p2

i x2
i
]

(E
[
p2

i x2
i
]
= E

[
p2

r x2
r
]
) into (11) and obtain:

E
[
∆p2

r
]
' Vb + b2S

where

V = V1N + V2

V1 = −6a3m2
p − 2a12m2

p − 2a1mp − 6σ2
xr a3mp − 2σ2

xi
a12mp

V2 = 3σ2
xr a3mp − 3

E[x4
r ]

σ2
xr

a3mp

S = A1N2 + A2N + A3

A1 = 2σ2
xi

σ2
xr a1a12 + 12σ2

xi
σ2

xr a3a12mp + 2σ2
xi

a1a12mp + 6σ2
xi

a3a12m2
p+

2E
[
x4

r
]

σ2
xi

a3a12 + 6σ4
xr a2

12mp + σ2
xr a2

1 + 12σ2
xr a1a3mp + 2σ2

xr a1a12mp+

45σ2
xr a2

3m2
p + 12σ2

xr a3a12m2
p + 9σ2

xr a2
12m2

p + E
[
x4

r
]

σ2
xr a2

12 + a2
1mp+

6a1a3m2
p + 2E

[
x4

r
]

a1a3 + 2a1a12m2
p + 15a2

3m3
p + 15E

[
x4

r
]

a2
3mp+

E
[
x6

r
]

a2
3 + 6a3a12m3

p + 2E
[
x4

r
]

a3a12mp + 3a2
12m3

p + E
[
x4

r
]

a2
12mp

A2 = 3E
[
x4

r
]

a2
12mp − 15

2 E
[
x4

r
]

a2
3mp − 45σ2

xr a2
3m2

p − 3σ2
xr a2

12m2
p−

3σ4
xr a2

12mp − 6σ2
xr a3a12m2

p + 45
E[x4

r ]
σ2

xr
a2

3m2
p + 3

E[x4
r ]

σ2
xr

a2
12m2

p−

6σ2
xr a1a3mp +

15
2

E[x6
r ]

σ2
xr

a2
3mp + 6

E[x4
r ]

σ2
xr

a3a12m2
p−

6σ2
xi

σ2
xr a3a12mp + 6

E[x4
r ]

σ2
xr

a1a3mp + 6E
[
x4

r
] σ2

xi
σ2

xr
a3a12mp

A3 = 45
4 σ2

xr a2
3m2

p − 45
2

E[x4
r ]

σ2
xr

a2
3m2

p +
45
4

E[x6
r ]

E[x4
r ]

a2
3m2

p

b = µσ2
x ∑k=R−1

k=0 |hk [n]|2

(22)

Next we set E
[
∆p2

r
]
= 0 and with the help of (22) we obtain for b 6= 0:

b = −V
S

= − V1N + V2

A1N2 + A2N + A3
(23)
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Now, according to B (6), we have a linear relation between the step-size parameter µ and the
equalizer’s tap length N which was obtained in [1] under the assumption that the equalizer reaches a
relative low residual ISI with the selected equalizer’s tap length N. Therefore, if we have that:

|A1| > |A2| ; |A1| > |A3|

|V1N| >> |V2| ⇒ N >>
∣∣∣V2

V1

∣∣∣ (24)

We obtain a linear relation between the step-size parameter µ and the equalizer’s tap length N
and obtain a condition on the parameter N. Please note that for mp → 0, the inequalities |A1| > |A2|
and |A1| > |A3| are always true. Figure 7 describes the step-size parameter µ calculated via (23) for
the 16QAM input case, valid for CH1 and for Godard’s algorithm , as a function of the equalizer’s tap
length N for three levels of residual ISI. It should be pointed out that when the equalizer leaves the
system with a residual ISI of −15.6 dB, the system will suffer from a relative high symbol error rate
compared to the case where the residual ISI is −23.6 dB or −22.5 dB. According to Figure 7, there is a
range of values for N, where the relation between the step-size parameter µ and the equalizer’s tap
length N is approximately linear.

0 5 10 15 20 25 30 35 40

N

0

1

2

3

4

5

6
10

-4

ISI=-22.5 dB

ISI=-23.6 dB

ISI=-15.6 dB

Figure 7. The step-size parameter calculated via (23) for the 16QAM input case, valid for CH1 and for
Godard’s algorithm , as a function of the equalizer’s tap length for three levels of residual ISI.

Now, let us examine the expression of
∣∣∣V2

V1

∣∣∣ (24) for three cases of residual ISI (three cases of mp),
for the 16QAM input case, CH1 and for Godard’s algorithm:
case1: ISI = −22.5 dB (mp = 0.027992):

N >>
∣∣∣V2

V1

∣∣∣ = 0.694 45→ 20
∣∣∣V2

V1

∣∣∣ ' 14

case2: ISI = −23.6 dB (mp = 0.0218233):

N >>
∣∣∣V2

V1

∣∣∣ = 0.696 94→ 20
∣∣∣V2

V1

∣∣∣ ' 14

case3: ISI = −15.6 dB (mp = 0.1378045):

N >>
∣∣∣V2

V1

∣∣∣ = 0.652 95→ 20
∣∣∣V2

V1

∣∣∣ ' 13

According to Figure 7, a tap length of N = 13 or N = 14 is lying approximately on the linear
curve of the step-size parameter µ as a function of the equalizer’s tap length N.

3. Discussion

In the previous section we have shown that by multiplying the expression of
∣∣∣V2

V1

∣∣∣ by twenty gives
a value for N that is lying approximately on the linear curve of µ as a function of N. Now, let us
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choose N = 13 for the three cases of the desired residual ISI from the previous section (ISI = −22.5 dB,
ISI = −23.6 dB, ISI = −15.6 dB) and calculate the step-size parameter µ via (4), (5) and (6) for the
16QAM input case, CH1 and Godard’s [2] algorithm. According to (4), (5) and (6):
case1: ISI = −22.5 dB (mp = 0.027992): B = 3. 291 3× 10−3 → µ = 2. 531 8× 10−5

case2: ISI = −23.6 dB (mp = 0.0218233): B = 2. 600 3× 10−3 → µ = 2. 000 2× 10−5

case3: ISI = −15.6 dB (mp = 0.1378045): B = 1. 300 2× 10−2 → µ = 1. 000 2× 10−4

Next, we will show that the obtained values for µ via (4), (5) and (6) for N = 13 really achieve
the desired residual ISI. Figure 8 shows the simulated equalization performance from the residual ISI
point of view for the 16QAM input case, CH1, N = 13 and for Godard’s [2] algorithm. According to
Figure 8, the obtained values for µ via (4), (5) and (6) really achieve the desired residual ISI for N = 13.

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration Number

-20

-15

-10

-5

0

IS
I 
[d

B
]

=0.000025318

=0.000020002

=0.00010002

X 4401

Y -23.56

X 4201

Y -15.62

X 4001

Y -22.59

Figure 8. Equalizer’s performance from the residual ISI point of view for N = 13

Now, let us compare the values for the step-size parameter µ obtained via (4), (5) and (6) with
those obtained via Figure 7 for N = 13. Figures 9 and 10 are zoomed in versions of Figure 7.

12 14 16 18 20 22

N

1

1.5

2

2.5

3

3.5

4

4.5

5
10

-5

ISI=-22.5 dB

ISI=-23.6 dB

ISI=-15.6 dB

X 13

Y 2.103e-05

X 13

Y 2.66e-05

Figure 9. The step-size parameter calculated via (23) for the 16QAM input case, valid for CH1 and for
Godard’s algorithm , as a function of the equalizer’s tap length for three levels of residual ISI.
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N
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1.5
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2.5
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ISI=-22.5 dB

ISI=-23.6 dB

ISI=-15.6 dB

X 13

Y 0.0001039

Figure 10. The step-size parameter calculated via (23) for the 16QAM input case, valid for CH1 and for
Godard’s algorithm , as a function of the equalizer’s tap length for three levels of residual ISI.

According to Figures 9 and 10, there is a high correlation between the obtained values for µ via
(4), (5) and (6) with those obtained from 9 and 10 for N = 13. Thus, multiplying the expression of

∣∣∣V2
V1

∣∣∣
(24) by twenty gives a good working value for N for CH1. However, since CH1 is considered as an
easy channel, the expression of

∣∣∣V2
V1

∣∣∣ (24) should be multiplied by a factor greater than twenty (maybe
thirty or more) for harder channels.

Please note that for small values for mp, the expression of
∣∣∣V2

V1

∣∣∣ is approximately independent with
mp. The equalizer’s tap length should be set large enough such it can compensate for the channel
distortions regardless to the desired residual ISI. Thus, the equalizer’s tap length N should be derived
for the low valued mp case.
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