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Introduction

— Performance of modern RF and Microwave circults is largely affected by

manufacturing tolerances

— A device freqguency response Is usually subject to high variability with
respect to design parameters

->Uncertainty quantification is often required
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Introduction

— Uncertainty quantification requires many statistical samples, I.e.
frequency responses, which are expensive to obtain
- Use of Generative Modeling techniques

— The idea behind Generative Modeling
1) Simulate or measure few frequency responses (training instances)
2) Train a model to produce new responses, according to a statistical distribution
that matches the original one
3) Generate many new responses for uncertainty quantification
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Methodology

— In this work:
* Two generative algorithms:
Gaussian Process-Latent Variable Model (GP-LVM)
Variational Autoencoder (VAE)
* Both algorithms adopt a generative framework based on Vector Fitting

(VF) [1]

— Advantages
1. Black-box approach
2. No knowledge of the number of varying parameter or their distribution
3. Stability and reciprocity of frequency responses guaranteed by VF

characterization
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Methodology

— Proposed Modeling Framework [1]
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Steps
Training data are converted from S-parameters to rational coefficients via VF
The generative model (GP-LVM or VAE) is trained on the rational coefficients
New rational instances are generated by the model
Rational instances are reconverted in S-parameters
Non-passive instances are discarded
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Vector Fitting

— Converts S-parameters responses S(s) into a rational model [2]

D T r;: residues
S(S) - Z S — ; -7 a;: poles,common to all instance
1=0 z s:complex frequency variable

— Only residues r; are fed into the GP-LVM or VAE
— S-parameters are reconstructed by evaluating the rational model at the
desired frequency s
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Generative Models

— Generative models reproduce the distribution of observed residues
data p(Y), given a distribution of latent variables p(X)
« X variables encode the sources of variablility, without an explicit
relation to the design parameters

— p(Y) is obtained by marginalizing
p(Y,X) = p(Y|X)p(X)

— p(X) Is Gaussian by assumption in both GP-LVM and VAE:
p(X) =N(0,I)
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Gausslian Process-Latent Variable Model

— The GP-LVM [3] maps the latent space to the observed space using Gaussian
Processes (GPs), modeling the likelihood p(Y|X)

D
p(Y[X) =] | N(y4]0,%), X: chosen kernel matrix
d=1

y4: observations of the d residue

— A new instance of residues Y* is generated by drawing a sample X* from p(X)
and evaluating the corresponding GPs output
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Variational Autoencoder

— The VAE [4] learns p(Y|X) likelihood and p(X|Y) posterior at the same time, by
maximizing a variational lower bound
— It maps the latent space to the observed space using a neural architecture:

Sampling p(X)
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encoder decoder
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— Like in GP-LVM, a new instance of residues Y"* is generated by drawing a

__sample X* from p(X) and evaluating the output of the decoder network
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Accuracy Metric

— Cramer-Von-Mises statistics [5] Is employed:
* |t compares
1. the original distribution from a validation set of responses
2. the distribution of a set of generated responses

* The two sets can have different cardinality

* |t provides a dissimilarity score (CM-score) across the frequency
range

 Lower CM-score means higher accuracy of the model
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Results
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Example 1: Microstrip coupled transmission lines

Settings:

« 5 design parameters, 2 ports, range [0-1.8] GHz
 10% standard deviation from nominal value

« 50 training instances
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Results:

High accuracy for both GP-LVM and VAE
GP-LVM more accurate on average
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Example 1: Generated Distributions

GPVLM samples e) VAE samples

a) Validation samples c)
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Example 1: Microstrip coupled
transmission lines

S,; Smith Chart (detail), for 50 frequency responses

Training responses GPLVM generated responses VAE generated responses
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Example 1: Microstrip coupled transmission lines

S,; residues pairs in the complex plane, for 50 frequency responses

Training responses GPLVM generated responses VAE generated responses
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Example 2: Microstrip stop-band filter

Settings:

®
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4 design parameters, 2 ports, range: [5-25 GHZz]
5% standard deviation from nominal value
100 training instances

. =10.25

h, =0.125mm | L=2.25 mm !

Results:

wide-band and highly variable frequency response:
-> lower accuracy than in Example 1

VAE more accurate on average
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Conclusions

— The VF-based generative modeling framework can produce many
frequency responses from a small set of data

— Two generative models, the GP-LVM and the VAE are tested on two
application examples

— Both models show adequate performance and can reduce the
computational load for uncertainty quantification purposes
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