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Abstract: The need for accurate physical measurements is omnipresent in both scientific and
engineering applications. Such measurements can be used to explore and characterize the behavior of
a system over the parameters of interest. These procedures are often very costly and time-consuming,
requiring many measurements or samples. Therefore, a suitable data collection strategy can be used to
reduce the cost of acquiring the required samples. One important consideration which often surfaces
in physical experiments, like near-field measurements for electromagnetic compliance testing, is
the total path length between consecutively visited samples by the measurement probe, as the time
needed to travel along this path is often a limiting factor. A line-based sampling strategy optimizes
the sample locations in order to reduce the overall path length while achieving the intended goal.
Previous research on line-based sampling techniques solely focused on exploring the measurement
space. None of these techniques considered the actual measurements themselves despite these
values hold the potential to identify interesting regions in the parameter space, such as an optimum,
quickly during the sampling process. In this paper, we extend Bayesian optimization, a point-based
optimization technique into a line-based setting. The proposed algorithm is assessed using an
artificial example and an electromagnetic compatibility use-case. The results show that our line-based
technique is able to find the optimum using a significantly shorter total path length compared to the
point-based approach.

Keywords: line-based sampling; Bayesian optimisation; exploitative sampling

1. Introduction

In many fields of science and engineering, measurements are an essential way to acquire a
representation of an underlying, often complex, function. Determining a sampling strategy is often
done through Design of Experiment (DoE) methods [1,2]. These methods aim at optimizing the
locations of the samples such that the information gain per sample is maximized. There is a clear
trade-off between the amount of samples taken and the associated cost of the experiment. Increasing
the amount of samples can increase the quality of the representation, but will also increase the cost of
the complete set of experiments.

When measurements are taken in a virtual space, such as a parameter space in a simulation, there
is no constraint on the locations of sequentially taken samples. In a physical measurement space,
using a measurement probe, the probe has to physically move and hence all samples form a path
with a predetermined order. This is referred to as a Line-based sampling strategy. Examples include

Eng. Proc. 2020, xx>0 0xx , 5; doi:10.3390/engprocxx010005 www.mdpi.com/journal/engproc

http://www.mdpi.com/journal/engproc
http://www.mdpi.com
http://www.mdpi.com/2673-4591/xx>0 0xx /1/5?type=check_update&version=1
http://dx.doi.org/10.3390/engprocxx010005
http://www.mdpi.com/journal/engproc


Eng. Proc. 2020, xx>0 0xx , 5 2 of 11

Electromagnetic compatibility (EMC) testing [3], organ palpation [4] and vegetation monitoring [5].
The length of this path has to be taken into account in order to minimize sampling cost, as moving the
probe takes measurement time, possibly resulting in an economic cost. The path length might also be
limited due to physical constraints, for instance battery lifetime or the chance of mechanical failure [6].
However, as sequentially taken samples are close together, the additional information of a subsequent
sample is not optimal. Here, a new trade-off emerges. On the one hand, the path between samples
should be as short as possible to minimize the amount total travel time, and on the other hand, the
space between samples should be as large as possible, which increases the path length.

We build further on Bayesian optimization (BO) to account for the cost of traveling between
consecutively visited samples by creating a line-based extension to the framework. We solve an EMC
problem and show that our technique has a better optimisation performance with respect to the path
length.

This paper is structured as follows. First, in section 2 some background information is given
regarding the literature of design of experiments. Next, in section 3 Bayesian optimisation is explained
and in subsection 3.4 line-based sampling using BO is elaborated upon. Next a set of experiments
comparing our approach to traditional solutions are performed in section 4, after which conclusions
are drawn in section 5.

2. Background

The goal of any Design Of Experiment (DoE) method is to collect a data-set which covers the
measurement space in an efficient way according to the task and goal at hand. For instance, in an
exploration context, an adequate DoE could uniformly sample the measurement space. However,
in a maximisation context, the DoE should focus on areas in the measurement space which have a
high probability of containing the the maximum of the space. In the remainder of this section, we
distinguish DoE methods in a number of properties.

2.1. Line-based Versus Sample-Based

The distinction is made between strategies which only focus on the sample locations, point based
strategies, and the strategies which also focus on the path between the samples called line based
strategies. A DoE method is classified as point based when it does not take into account the cost of
movement between sample points. This is, for example, the case for sampling methods tailored to a
virtual measurement space such as in computer simulations. Some examples include factorial designs
[7] and FLOLA-voronoi sampling [8,9].

In line-based sampling, the cost of moving around in the measurement space is taken into account.
All sample points are taken in a specific order and form a path. The information gain per sample
should be maximized while keeping the path length to a minimum. Line-based sampling is very
similar to coverage path planning [10], where the measurement probe must pass through every point
in the measurement space. Examples include the Boustrophedon path [11] and the Hilbert curve [12].

2.2. Sequential Versus One-Shot

When a fixed number ’N’ of sample points is allocated to the DoE method, it is characterised as a
one-shot method. An example is factorial designs [7]. Determining the amount of samples upfront,
allows for an ideal placement and coverage of the space. However, determining the optimal amount of
samples N can be difficult and underestimations or overestimations can lead to additional costs. These
types of technique are not adaptive as they do not allow for the DoE te be extended once it has been
executed.

Sequential methods on the other hand, iteratively increase the amount of samples by determining
consecutive sample locations based on the location and information gained from the previous samples.
Theoretically, these algorithms could continue indefinitely. In practice, stopping criteria are used
to determine when sufficient samples are available. Examples of sequential DoE include the point



Eng. Proc. 2020, xx>0 0xx , 5 3 of 11

based maximin sampling [13] and the line-based Albatros algorithm [14]. The iterative process makes
sequential methods more desirable in situations where it is uncertain how many samples will be
needed before a certain criteria is reached or where mechanical failure of the measurement probe is
likely.

2.3. Exploitative Versus Explorative

When the main goal of a DoE is to uniformly distribute samples within the measurement space,
an explorative strategy is most suitable. In these strategies, only the measurement location and not
the measured sample value is taken into account. Examples include the Hilbert curve [12] and the
Albatros algorithm [14].

This is in contrast to exploitative DoE methods that use the measured sample values in order
to optimize the location of upcoming samples and to focus on a region of interest, like for example
the maximum of the sampled function. It is evident that exploitative methods are sequential by
nature. This is because the information of previous sample values have to be taken into account before
new samples can be taken. An example of a point-based sequential technique is the efficient global
optimization (EGO) algorithm [15] using bayesian optimisation (BO).

It is important to note that the distinction between explorative and exploitative methods is not
binary. An exploitative algorithm should encompass a degree of exploration in order to increase
the knowledge about the environment which then can then be exploited. This trade-off between
exploration and exploitation is a more general problem in the field of surrogate modeling and artificial
intelligence [16–18] and in other fields like organisational management [19].

To the authors knowledge, no generic line-based sequential exploitative DoE method exists. This
paper aims at filling in this gap as demonstrated in Table 1. The advantage of such a technique is
that it is able to explore the sampling space but also that it is able to exploit the taken measurements,
resulting in a swifter achievement of the set goal.

Table 1. Classification of sample strategy examples. The distinction is made between line-based and
point-based, sequential and one-shot, and exploitative and explorative. The Line-Based BO sampling
strategy fills in the gap of sequential exploitative line-based sampling strategies.

Examples
Line-based

vs
Point-based

Sequential
vs

One-shot

Exploitative
vs

Explorative
Factorial Designs [7] Point-based One-shot Explorative

Boustrophedon path [11]
Hilbert curve [12] Line-based One-shot Explorative

Maximin criterion [13] Point-based Sequential Explorative
ALBATROS [14]. Line-based Sequential Explorative

EGO [15]
FLOLA-voronoi [8,9] Point-based Sequential Exploitative

LBO (This work) Line-based Sequential Exploitative

3. Bayesian Optimisation

3.1. Gaussian Process

In order to mathematically reason over the measurement space of the Device Under Test (DUT)
given a finite set of samples, a surrogate model is built. This model mimics the respons over the
measurement space and can be used to perform cheap evaluations. The flexibility of the Bayesian
optimisation framework allows for the use of a wide range of mathematical models. In this paper, the
Gaussian Process (GP) is chosen as it has a high modeling power in a sparse-data context. A GP models
the measured quantity over the DUT as a distribution over functions f : X → R. Given a finite set of
input samples it is able to assign an estimate and uncertainty measure of the measured quantity at
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any location of the DUT. A GP is completely defined by a mean function m : X → R and a covariance
function k : X× X → R and the set of samples. In practice, the mean function is often considered to be
0, meaning that the only necessary design choice is the kernel function. For engineering applications, a
common choice is the Matérn covariance function or the RBF covariance function. The latter is used in
this paper and is given by equation 1.Here, σ is a parameter which is optimised during the learning
process.

K(x, x′) = exp
(
−‖x− x′‖2

2σ2

)
(1)

For a more in depth discussion about the use of GP’s in machine learning, [20] can be consulted.

3.2. Optimisation Procedure

Given an adequate model, the BO procedure consists of multiple steps.

1. First the measured quantity is evaluated on an initial set of locations of the DUT.
2. This allows for building the GP model, over which an objective function α : X → R is defined

and referred to as the acquisition function which is discussed in more detail in the next section.
3. As the GP is much cheaper to evaluate, it can be used to efficiently optimise α(x). The optimum

x∗ of α(x) is then evaluated on the actual DUT.
4. This evaluation produces a new sample which can be fed into the GP model.

By iterating over the above steps until a stopping criteria is reached, the model is iteratively
refined in areas where the real optimum on the DUT most likely lies. This increases the chance of
finding the real optimum of the true problem. This process is illustrated in Figure 1 by following the
red path. This is also illustrated in Algorithm 1.

Algorithm 1: Bayesian Optimisation Process
// Initial dataset that is evaluated on the Device Under Test
Dataset = (x, y)
while End Condition Not Met do

Build Model Using Dataset
Construct the acquisition function α : X → R
x∗ = argmaxx α(x)
Add (x∗, DUT(x∗)) to Dataset

end

Figure 1. Illustration of the BO process and the adapted step for the line-based approach.

3.3. Acquisition Function

In order to find the next sampling location, an objective function, also called the acquisition
function, is optimised over the GP model. For optimisation of the measured quantity, typical acquisition
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functions are Expected improvement (EI), Probability of Improvement (POI) [2] and Max-Value Entropy
Search (MES) [21]. For more complex objectives a custom acquisition function can be constructed. In
this paper the EI acquisition function is used.

EI(x) = (µ(x)− f ∗)Φ(
µ(x)− f ∗

σ(x)
) + σ(x)φ(

µ(x)− f ∗

σ(x)
) (2)

As can be seen from the formula, the function uses both the mean estimate µ(x) and the variance
σ(x)2 from the Gaussian process to asses the quality of a sample at a location x. In addition, this
acquisition function uses f ∗, Φ and φ, which respectively represent the already maximum sampled
value, the cdf of the normal distribution and the pdf of the normal distribution.

The acquisition function represents the improvement that is expected over the current best result
if the next sampling point is at location x. The function offers a natural trade-off between exploration
and exploitation as can be seen in its equation: the first term biases the search towards regions of
interest and the second term towards regions of uncertainty [22].

3.4. Line-based Bayesian Optimisation

We propose to extend the Bayesian optimisation procedure by creating the Line-Based Bayesian
Optimisation (LBO). This is illustrated by the blue path in Figure 1.

The procedure follows the BO strategy closely. It also starts by building a model using an initial
dataset, which can be used to define the acquisition function α(x). The acquisition function is also
optimised as discussed in the BO case, however instead of evaluating the model directly at x∗, a path
of multiple samples is constructed from the current location of the probe to x∗. This results in more
samples for a similar total path length. All the samples are fed to the GP model. This results both
in a better exploration of the measurement space as well as an increase in its predictive power. This
procedure is also described in Algoritm 2

Algorithm 2: Line-based Bayesian Optimisation Process
// Initial dataset that is evaluated on the Device Under Test
Dataset = (x, y)
while End Condition Not Met do

Build Model Using Dataset
Construct the acquisition function α : X → R
x∗ = argmaxx α(x)
Path = Path(from: current_location, to: x∗)
Add Path to Dataset

end

The shape of the path from the current location to x∗ will have an influence on the performance
of the algorithm. In this work, a straight line is used with a set step-size. As this path is fully defined
by a starting point and end point or better, the current location and the optimum of the acquisition
function x∗, no extra optimisation step is needed. The step-size is a parameter to be set by the domain
expert and should be set such that the function between two consecutively chosen points is expected
to be well-behaved. Future work might explore more generic path shapes and adaptive step-size to
further increase the performance of the algorithm.

4. Experiments

The LBO strategy is compared to the classic BO approach, using both the Expected improvement
acquisition function and the RBF covariance function. The LBO uses a step-size of 0.1 units. Both
techniques are initialised with one sample in the lower left corner of the sampling space. This mimics
the EMC measurment probe entering the measurement space. All techniques are run for 30 iterations.
In order to deal with varying final path lengths in different runs, the metrics are extrapolated using
constant extrapolation. Due to the stochastic nature of the optimisation process used in the training
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of the GP model and the acquisition function, slight variations between runs are expected. For this
reason, each experiment is repeated 15 times.

4.1. Use Cases

The techniques are tested on two 2D benchmark functions and a 2D engineering use case. The
peaks benchmark function can be found as built-in function in Matlab R© and is also used in [8], see
Figure 2a. The formula is given by,

f (x, y) =3(−1− 4x)2 × exp(−((4x− 2)2)− (4y− 1)2)

− 10((1/5)× (4x− 2)− (4x− 2)3 − (4y− 2)5)× exp(−(4x− 2)2

− (4y− 2)2)− (1/3)× exp(−(4x− 1)2 − (4y− 2)2)

(3)

The second benchmark function is a scaled and translated version of the peaks such that it presents
a more challenging use case due to the large uniform area it creates. This function is represented in
Figure 2b. The 2D engineering use case is an EMC measurement use case visualised in Figure 2c.

(a) Peaks function (b) Zoomed Peaks function (c) Bend Use case
Figure 2. Visualisation of the use cases.

4.2. Evaluation Metrics

The optimisation performance of the algorithms is measured using regret. In addition, the Root
mean squared error (RMSE) and the Mean Variance (MV) give additional insight into the quality of the
fit. The first metric by which the technique is tested is Regret as described in Equation 4.

REGRET = max
i

( f (samplei))−max
x,y

( f (x, y)) (4)

This metric measures the ability of the strategy to find the optimum in the measurement space. It
compares the maximum of all samples taken by iteration i with the actual maximum over the complete
measurement space.

The second metric is the RMSE between the prediction of the model and the ground truth. This
measures the ability of the underlying GP to model the measured quantity in the measurement space
by evaluating the mean estimation of the GP (µ) and the actual function over a finite set of i sample
locations.

RMSE =

√√√√ 1
N

N

∑
i=1

(µ(xi, yi)− f (xi, yi))2 (5)

Finally, the MV metric measures the estimated uncertainty of the GP with respect to its modeling
of the measured quantity. This measure can be calculated because the GP model inherently has
uncertainty quantification (σ) from which one can sample over the measurement space.

MV =
1
N

N

∑
i=1

σ(xi, yi) (6)
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The three metrics are measured with respect to the pathlength of the measurement strategy. For
each of the strategies, a lower value of the Regret indicates a better optimisation performance, a lower
value of the RMSE indicates a better fit of the model to the data and a lower value of the MV indicates
a higher confidence of the model in its predictions.

4.3. Results

Figure 3 illustrates resulting paths of both approaches and show the advantage of the LBO
approach. Although less samples are taken in the classic BO approach, than using the LBO approach,
the sample space is better explored, using a shorter total path length.

The BO strategy starts by exploring the space and by sampling at the borders. However, the
samples are distant from each other and as such, a long path is needed to connect only a few samples.
The strategy does not take advantage of the fact that the probe passed over some regions and misses
on the opportunity to capture information at that time.

The LBO strategy however, does sample whilst traveling between consecutive x∗ locations. This
means that the amount of data captured with respect to the total path length is much larger. This
allows for better modelling of the measured quantity resulting in a quicker and more robust detection
of the maximum value in the measurement space.

This is further backed by the full results of the experiments. Figures 4–6 show the evolution of the
Regret, RMSE and MV metric for the different sampling strategies in the different use cases. In all use
cases, the LBO strategy is able to discover the optimum of the sampling space significantly quicker
than the classic BO version. For the peaks use case, LBO discovers the optimum twice as fast as BO
(3.5 length units versus 7.5 length units).

The second use case, the zoomed peaks example, also shows that the LBO strategy outperforms
the BO strategy with respect to the regret metric, however in this use case both strategies are not robust
and show a high variability in the results over multiple runs. The lack of improvement of the RMSE
and the low MV of both strategies before 4 length units shows that the model is overconfident and
shows that the GP experiences difficulties modelling the highly flat regions in the space.

In the EMC use case, the LBO strategy is able to find the optimum using a path of 4 length units
whilst the BO strategy, on average is not able to find it in double the path length. In addition to finding
the optimum using a shorter path, the results are more robust against the inherent randomness of
the optimisation process as the standard deviation of the LBO strategy are much smaller than the BO
strategy. For these two use cases, the model of the measured quantity is also more accurate in the
LBO strategy than the BO strategy. The increased amount of samples allows for a better model of
the measured quantity and as such allows for increased predictive power, ie., a lower RMSE and for
increased confidence ie., a lower MV, which can lead to a better estimation of the maximum location in
the measurement space.

Figure 3. Example of a path taken by the BO and LBO strategy with similar total path length.
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Figure 4. Comparison of the Mean and 2× std margins for the evolution of the Regret, RMSE and MV
metric with respect to the path length for the peaks use case between the BO and LBO approach.

Figure 5. Comparison of the Mean and 2× std margins for the evolution of the Regret, RMSE and
MV metric with respect to the path length for the zoomed peaks use case between the BO and LBO
approach.

Figure 6. Comparison of the Mean and 2× std margins for the evolution of the Regret, RMSE and MV
metric with respect to the path length for the EMC use case between the BO and LBO approach.

5. Conclusion

In this paper, the LBO Sampling strategy was introduced, benchmarked and applied to an existing
engineering problem. The aim of the algorithm is to fill in the gap in DoE algorithms with a line-based,
sequential and exploitative algorithm. The algorithm uses a Gaussian Process as underlying model
to define waypoints between which to travel and to construct a path between the waypoints. The
use of the Gaussian Process and a suitable acquisition function allows for balancing exploration and
exploitation within the algorithm.

Whereas point based strategies optimize a metric in terms of the number of samples, line-based
strategies focus on spreading the amount of samples while optimizing the path length. The LBO
sampling strategy augments the capabilities of line based sample strategies by dynamically focusing on
regions of interest and on regions with limited knowledge. For both the benchmark experiment and the
EMC engineering use-case the use of LBO shows a significant improvement to capture the underlying
function and discover the global maximum while decreasing the total path length. This both increases
the speed and decreases the cost of the sampling process which makes the LBO sampling strategy
especially interesting for time consuming experiments as well as in situations where the amount of
samples is not known upfront or where failure of the measurement probe is possible.
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Future work might explore more generic path shapes and adaptive step-size to further increase
the performance of the algorithm.
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