Diels-Alder Reactions of Dienophiles and Cyclopentadiene Using a Sealed Tube Protocol

Richard T. Taylor*, Christopher M. Goins and Katherine R. Taylor

Department of Chemistry and Biochemistry
Miami University
Oxford, OH 45056 USA

Procedure

- Rather than 'crack' dicyclopentadiene in a separate step, reactants are placed in a sealed tube and heated to 180 for various times
- Dienophile as limiting reagent
- Analyze by GC/MS and NMR

Alkyne dienophiles

• No stereochemical implications

Dienophile	Mass dienophile	Product	Endo/Exo	Yield
	Time			
H ₃ CO ₂ C — — CO ₂ CH ₃	3.5g	CO ₂ CH ₃	NA	75%
	60min			
		CO ₂ CH ₃		
	2.55g		NA	trace
н	90min			

Alkene dienophiles – less stereoselectivity than low T

Likely not exclusively a kinetic phenomenon – at least somewhat

reversible

0	4.96g 60min		4/1	46%
CO ₂ C ₄ H ₉	3.25g 3.5h	CO ₂ C ₄ H ₉	1.85/1	90
CO ₂ CH ₃	2.55g 3.5h	H ₃ CO ₂ C	0.64/1	80%
	2.14g 60min		2.56/1	10%