

European

Commission

Development and optimisation of an amperometric immunosensor for the detection of banned antibiotic residues in honey

Valérie Gaudin C.Hédou, C. Soumet, E. Verdon

Anses, Laboratory of Fougeres, European Union Reference Laboratory (EU-RL) for Antimicrobial and Dye Residue Control in Food-Producing Animals,

> La Haute Marche-Javené, 35302 Fougères, France e-mail: valerie.gaudin@anses.fr

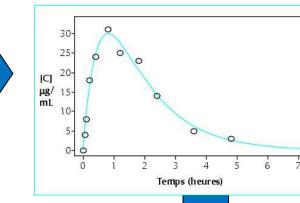
Outline

- Context
- Method
- Optimisation/Validation
- Results
- Conclusions
- Perspectives

Anses

- Missions: contributes to ensuring:
 - Human health and safety in the fields of environment, work and food
 - Protecting animal health and welfare
 - Protecting plant health

Organisation: Divisions

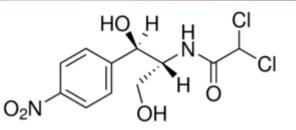

European

- Regulated products and science for expertise
- Resarch and science division: 11 laboratories
 - Fougères: NRL for vet drugs and EURL for antibiotic residues in food from animal origin

າອີes 🚺 🤉

How did antibiotics become part of the food chain?

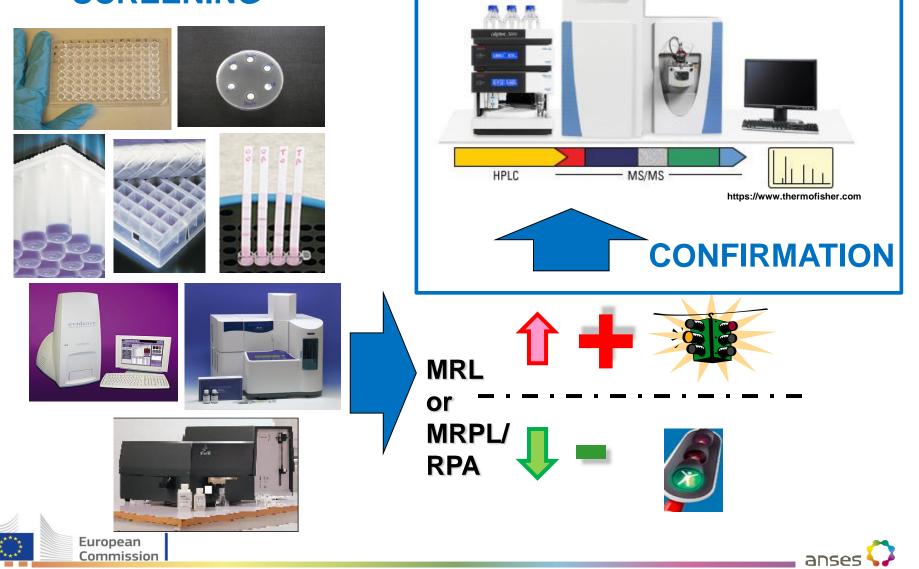
- Animal treatment
- Regulatory limits



FOOD OF ANIMAL ORIGIN

- Authorised substances: MRL
 - Acceptable threshold (toxicity, exposure)
- Banned substances: RPA/MRPL
 - Detected/identified/quantified (analytical)
- Regulatory control: NRMP

Banned antimicrobials



- Chloramphenicol (CAP):
 - Potent, efficient antibiotic used since years, broad spectrum, cheap
 - Toxicity: Aplastic anemia (AA) and bone marrow suppression
 - Banned from animal food production (1993)
 - MRPL/RPA: the lowest level which can analytically be achieved by the official control laboratories: 0.3 µg/kg

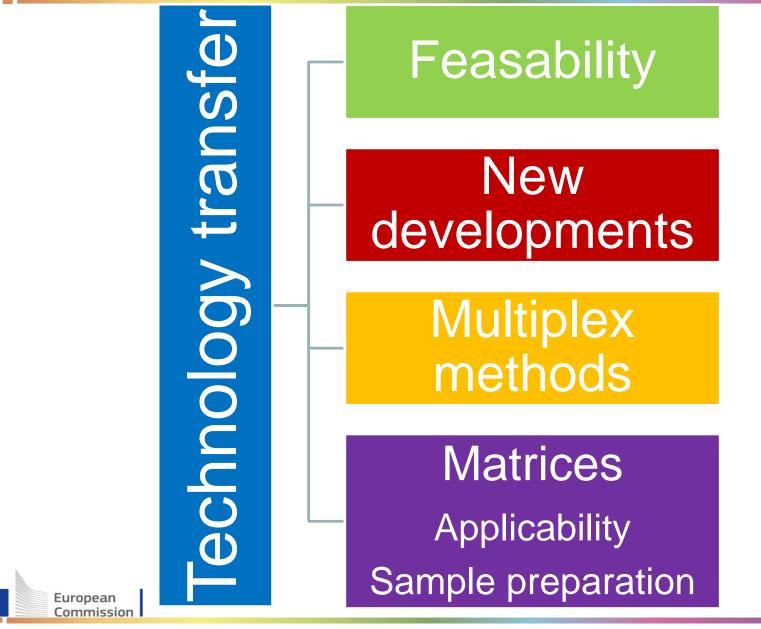
Analytical strategy

SCREENING

Screening methods

- Performance characteristics:
 - Cheap
 - Quick
 - Sensitive (< 5 % of false negative results)
 - Specific or with a wide spectrum detection depending on the target analytes
 - High throughput of samples
- Biosensors Drawbacks: cost (investment, – Optical commercial kits

Origin of the project


- Product $2e^{-} \rightarrow i \rightarrow$ Analyte (Substrate) Biological recognition molecule (Enzyme) Product $i \rightarrow$ $i \rightarrow$ $i \rightarrow$ Signal
- Amperometric (electrochemical) biosensor for screening of TCYC, SULF and PEN in milk below MRL
 - Amperometric detection: production of a current when a potential is applied between 2 electrodes
 - Low cost, promising LOD, portable, automatisable
 - On-site training (end 2016)

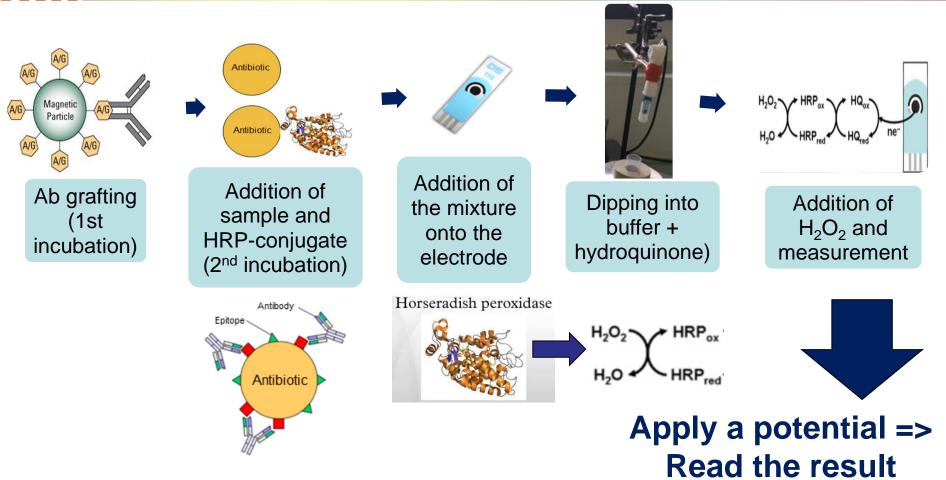
Spanish research team

Conzuelo F, Ruiz-Valdepeñas Montiel V, Campuzano S, Gamella M, Torrente-Rodríguez RM, Reviejo AJ, Pingarrón JM. 2014. Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors. Anal. Chim. Acta. 820:32-38.

Questions

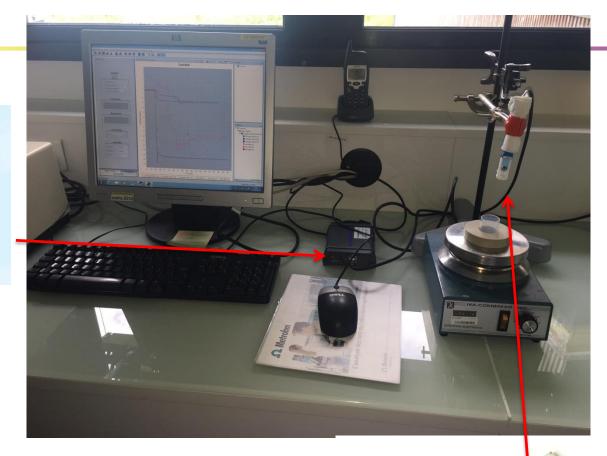
1st International Electronic Conference on Biosensors (IECB), from 2 to 17 November 2020

anses


Assay principle and material

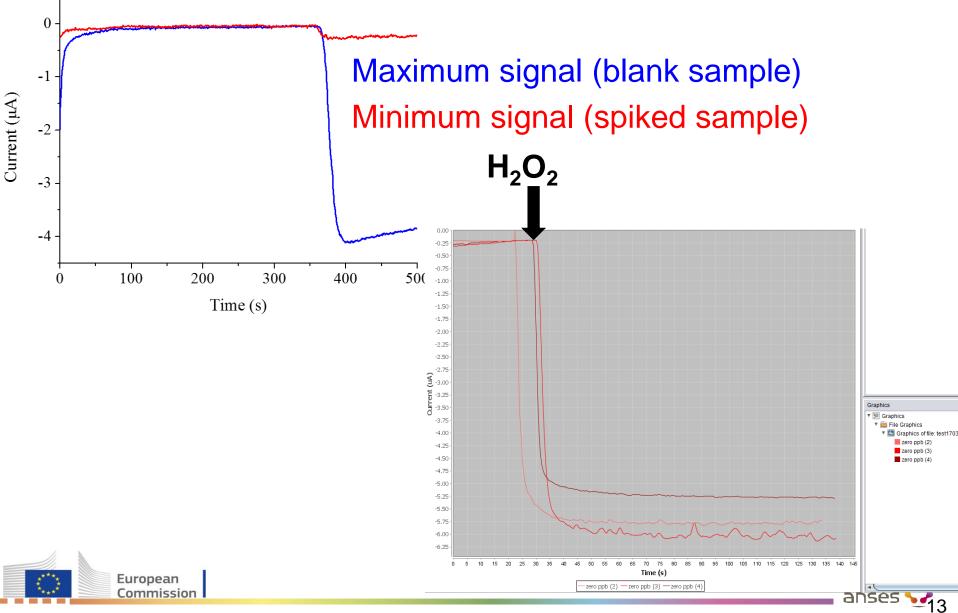
METHOD

Competitive IA


European Commission

Screen Printed Carbon Electrodes (SPCE), coupled to magnetic beads (MB)

Materials



European Commission

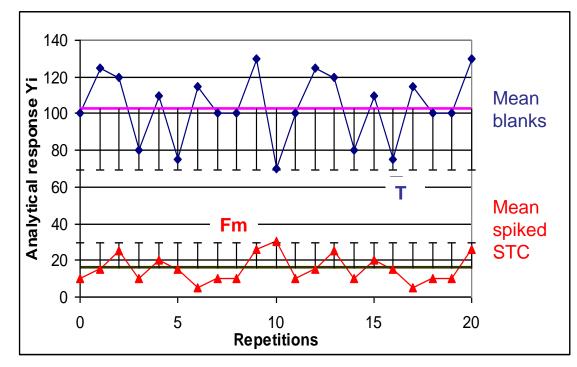
Amperometric signal

Protocols

OPTIMISATION/VALIDATION

Optimisation objectives

- Finding the optimal conditions, while considering that:
 - The more dilute the reagents, the less expensive it costs
 - The shorter the manipulation time, the more interesting the protocol



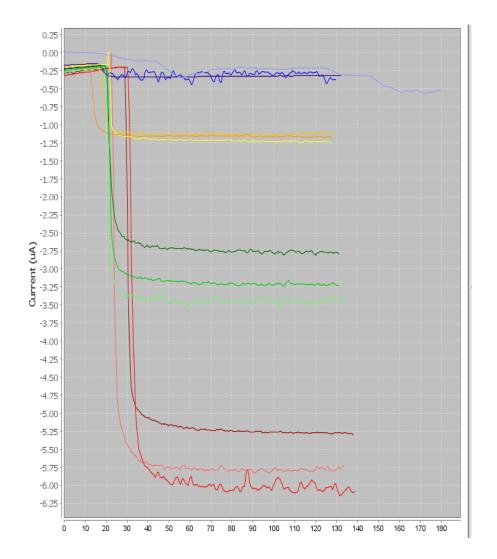
Validation regulations (EC/657/2002, EURL guideline)

- Performance characteristics/criteria:
 - Specificity (N blank samples)
 - Threshold value T:
 - $T = B 1,64*SD_B$
 - Detection capability
 CCβ (N spiked samples at STC)
 - Cut-off factor Fm:
 - Fm = M_{SP} + 1,64*SD_{SP}
 - βerror ≤ 5%

Competitive IA: response inversely proportional to the concentration => **T > Fm**

⇒ If T>Fm, CCβ = STC

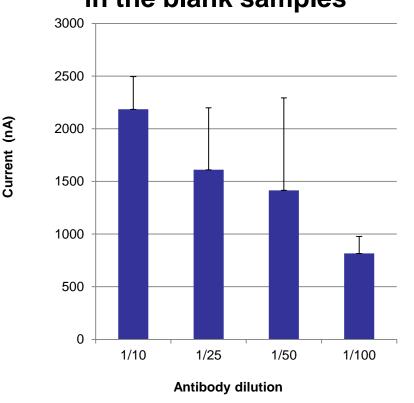
ises 📿

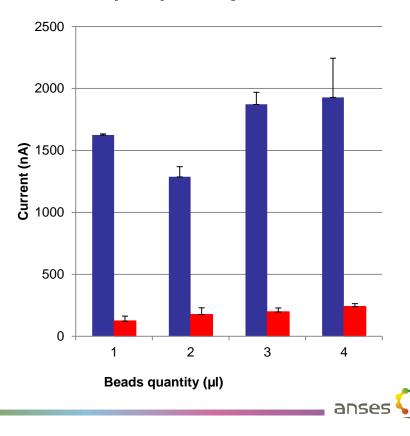

Screening of chloramphenicol in honey at or below regulatory limit

Development and optimisation

RESULTS

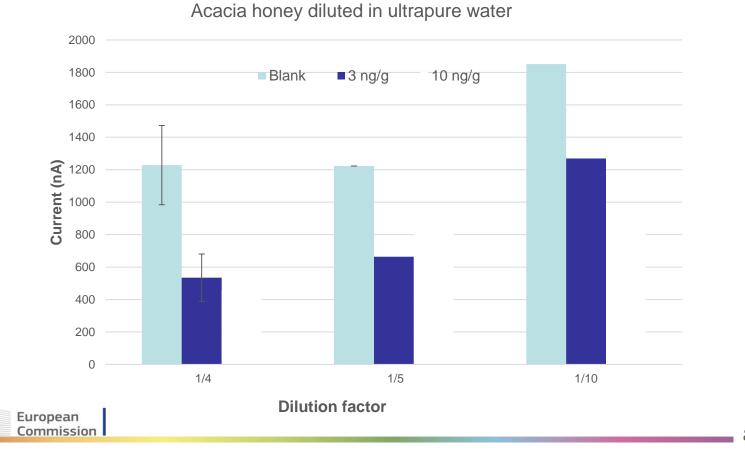
Measures in buffer before optimisation


- a series of spiked solutions of CAP in PBS-T.
- The red curves represent blank samples,
- in green the samples spiked to 1ng/ml,
- orange to 10 ng/ml
- and blue to 100ng/ml


Optimisation results in buffer

Extract of the results: Graph showing the current (nA) as a function of:

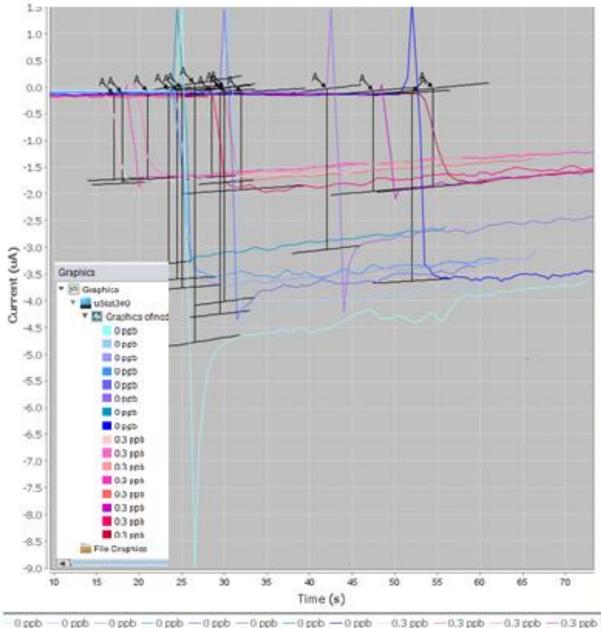
the quantity of beads used (µL) in the blank (blue) or spiked (red) samples


Optimised protocol in buffer

- 3 µL of beads per tube
- Antibodies diluted to 1/50th and incubated for 30 minutes
- CAP-HRP diluted to 1/100th and incubated for 30 minutes with the sample (ie. simultaneous method)
- Hydroquinone concentration of 1 mM and H2O2 of 1 M
- Applied potential of -0.2V

First results in honey

- Honey dilution in water
 - high variability on the measured current (around 20%), taking into account that it is a single acacia honey sample that was analysed several times



- Different extraction protocols tested:
 - Acetonitrile (different volumes)
 - Ethyl acetate (different volumes)
 - Dilution in water or buffer and extraction with ethyl acetate
- Optimised protocol with acacia honey
 - Heating 1.0 g of honey sample at 40° C for 15 min
 - Add 3 ml of ethyl acetate.

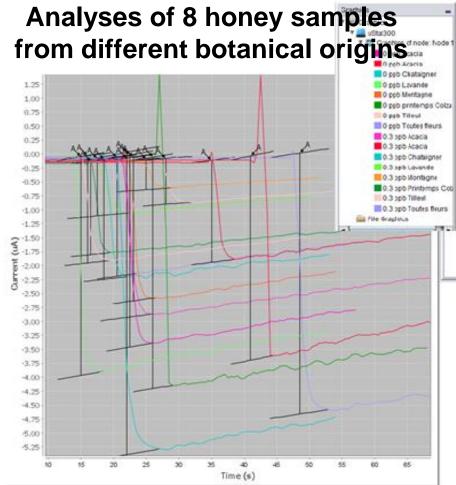
European

- vortex for 2 min and sonicate for 30 min
- centrifuge at 5000 rpm for 7 min
- supernatant evaporated to dryness at 50° C under nitrogen stream
 - Extracts reconstituted with 120 µl of PBS-T

Optimised extraction protocol (1)

-0.3 ppb -0.3 ppb -0.3 ppb -0.3 ppb

Repeated extractions and analyses of one single acacia honey


- CAP detected at 0.3 ng/g in acacia honey
- T = 2807 > Fm
 = 1904
- CV on blank samples = 16% and on spiked samples 7%
- Very promising results

Optimised extraction protocol (2)

- T (1902) < Fm (2905)
- CV on blank samples = 30% and on from different botanical origins spiked samples 48%
- Clear discrimination of individual results between the signals (current (nA)) from the blank honey and the same sample spiked with CAP to 0.3 ng/g
- Even with an extraction procedure in ethyl acetate, the honey matrix effect was always strong, impeding and preventing a global analysis for honey from

different botanical origins

— 0 ppb Acacia — 0 ppb Acacia — 0 ppb Chataigner — 0 ppb Lavande — 0 ppb Montagne — 0 ppb pnntemps Coba 0 ppb Tilleul — 0 ppb Toutes Reurs — 0.3 ppb Acacia — 0.3 ppb Acacia — 0.3 ppb Chataigner — 0.3 ppb Lavande — 0.3 ppb Montagner — 0.3 ppb Pnntemps Coba — 0.3 ppb Tilleul — 0.3 ppb Toutes Reurs

Acacia (2 samples), chestnut, lavender, mountain, spring, lime tree, multifloral

Complexity of honey matrix

- Not a single honey matrix, wide variety of honeys
- Honey composition and colour varies considerably depending on the botanical origin
 - Sugar (about 76%) (fructose, glucose, sucrose), water (18%) and other ingredients (minerals, proteins (ie. enzymes), Aa, fatty acids, vitamins, essential oils) about 6%, organic and aromatic substances including flavonoids, alcohol, esters, pigments and pollen
 - Eg. dark types of honey are richer in minerals than lighter, higher total phenolic content and consequently a higher antioxidant capacity
- Honey ingredients can interfere with the electrochemical detection, especially substances with antioxidant activities (eg. polyphenols).

PVPP and ethyl acetate extraction

- Poly(vinylpolypyrrolidoe) (PVPP)
 - crosslinked homopolymer that binds with phenolic compounds by hydrogen bonding.
 - used for the removal of phenolics and alkaloids from plant samples.
 - used in wine to absorb some of the phenolic compounds and astringent tannins
 - Two different concentrations of PVPP (0.2 ng/g and 0.8 ng/g of honey) were tested by adding 1 ml and 4 ml of a solution of PVPP 20% in 1 g of honey.

	PVPP 0.2 ng/g		PVPP 0.8 ng/g	
Botanical origin	Blank	CAP 0.3 ng/g	Blank	CAP 0.3 ng/g
Moutain	1440	1090	1808	1347
Forest	2502	1902	1995	1688
Scrubland	2224	1937	1576	1043
Sunflower	2244	1902	1977	1026
Spring	nd	1929	2191	1511
Multifloral	2764	2033	2018	1484

- 0.2 ng/g of PVPP, T = 1422 < Fm = 2374
- 0.8 ng/g of PVPP, T = 1582 <x Fm = 1788
- In both cases, T < Fm, but better when PVPP at the highest concentration (0.8 ng/g)
- Individual honey samples, all the blank samples were discriminated from the samples spiked with CAP to 0.3 ng/g
- Assay to be repated by increasing the PVPP concentration.

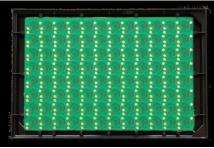
Perspectives

- To develop more efficient extraction protocols, able to remove or at least lower the strong matrix effect of honey
- Positive effect of PVPP on the reduction of the matrix effect to be investigated
- To compare different electrochemical modes of detection: amperometry, voltammetry
- Use of nanomaterials (i.e. Modified SPCE)
- Validation (60 different honey samples)
- Evaluation of an aptamer in replacement of the antibody to detect CAP

European Commission


Perspectives

- To develop biosensors for other banned antimicrobials (ie. Nitrofuran metabolites) and finally develop a multiplex method for the simultaneous detection of at least all these banned substances.
- Other matrices


European

• High throughput

Thank you for your attention Céline Hédou European Commission anses