

UNIVERSITATEA DE MEDICINĂ ȘI FARMACIE IULIU HAȚIEGANU CLUJ-NAPOCA

Electrochemical detection of doxorubicin and simvastatin for their combined use in the treatment of cancer

<u>Iulia Rus</u>, Mihaela Tertiş, Bianca Melean, Robert Săndulescu and Cecilia Cristea

Introduction

- Doxorubicin:
 - Anti-tumor drug widely used;
 - Found on the market in different pharmaceutical forms;
 - Efficient;
 - Causes important side effects.

• Simvastatin:

- Inhibitor of HMG-CoA reductase;
- Used in the treatment of hypercholesterolemia;
- In high doses decreases cell proliferation and potentiates the activity of anti-tumor drugs.

Drug delivery systems

Outline of the study

02 Electrochemical characterization of simvastatin

O3 Simultaneous detection of doxorubicin and simvastatin
Linear Sweep Voltammetry
Chronoamperometry

01. Electrochemical characterization of doxorubicin

- Influence of the electrode material;
- Influence of the electrolyte and pH;
- Influence of the scan rate.

Electrochemical characterization of doxorubicin

- Different types of electrodes were tested:
 - Graphite based SPE;
 - Gold based SPE;
 - Platinum based SPE;
 - Pencil graphite electrode (PGE);

Best results

Electrochemical characterization of doxorubicin

В

1.2

The influence of the electrolyte and pH of the solution

0.1 M acetate buffer solution pH 6.88

1,0

Figure A. DPVs of 10 µg/mL Dox in different electrolyte solutions **Figure B.** DPVs of 10 µg/mL Dox in acetate buffer of different pH

Electrochemical characterization of doxorubicin

• The influence of the scan rate

Table 1. Variation of the analytical current of Dox with the scanrate and square root of the scan rate

$I_{Ox} = 0.01 v + 0.43$	$R^2 = 0.989$	
$I_{\rm Ox} = 0.20 \ v^{1/2} - 0.12$	$R^2 = 0.988$	
$I_{\text{Red}} = -0.01 \text{ v} - 0.09$	$R^2 = 0.996$	
$I_{\text{Red}} = -0.15 \text{ v}^{1/2} + 0.33$	$R^2 = 0.983$	

Figure A. CVs of 10 μ g/mL Dox solution using PGE and different scan rates

02. Electrochemical characterization of simvastatin

- Influence of the electrode material;
- Influence of the pH;
- Influence of the scan rate.

Electrochemical characterization of simvastatin

Electrochemical characterization of simvastatin

• The influence of the pH

Electrochemical characterization of simvastatin

• The influence of scan rate

Table 1. Variation of the analytical current of Smv with the scan rate andsquare root of the scan rate

I _{Ox} = 0.1547 v + 2.2451	$R^2 = 0.9666$
$I_{Ox} = 2.2753 v^{1/2} - 4.2989$	R ² = 0.9847

Figure A. Variation of the analytical signal of 0.1 mg/ml Smv with the scan rate: 250 mV/s (black), 200 mV/s (red), 150 mV/s (green), 100 mV/s (blue), 75 mV/s (cyan), 50 mV/s (magenta), 25 mV/s (orange), 10 mV/s (dark green), 5 mV/s (violet)

03. Simultaneous detection of doxorubicin and simvastatin

- Linear Sweep Voltammetry
- Chronoamperometry

Simultaneous detection of doxorubicin and simvastatin

• Linear Sweep Voltammetry

Simultaneous detection of doxorubicin and simvastatin

Figure A. Addition of Smv between succesive additions of Dox in PB pH 5+25% EtOH, in chronoamperometry at 0.5 V. **Figure B**. Addition of Dox between succesive additions of Smv in PB pH 5+25% EtOH, in chronoamperometry at 0.95 V. **Figure C**. Variation of the analytical current of Dox alone, Dox in the presence of Smv, Smv alone and Smv in the presence of Dox.

Simultaneous detection of doxorubicin and simvastatin

Analyte	LSV	Amperometry
Dox	I (μA) = 273.3 [Dox] (mg/mL) + 1.18 R ² =0.997; Range: 0.001 – 0.1 mg/mL	I (μA) = 32.1 [Dox] (mg/mL) + 0.009 R ² =0.999; Range: 0.0005 – 0.065 mg/mL
Dox + 0.01 mg/mL Smv	I (μA) = 311.4 [Dox] (mg/mL) + 0.72 R ² =0.968; Range: 0.001 – 0.01 mg/mL	I (μA) = 29.97 [Dox] (mg/mL) - 0.049 R ² =0.997; Range: 0.002 – 0.065 mg/mL
Smv	I (μA) = 100.1 [Smv] (mg/mL) + 0.40 R ² =0.996; Range: 0.005 – 0.5 mg/mL	I (μA) = 29.04 [Smv] (mg/mL) + 0.073 R ² =0.994; Range: 0.002 – 0.065 mg/mL
Smv + 0.01 mg/mL Dox	I (μA) = 73.62 [Smv] (mg/mL) + 0.70 R ² =0.914; Range: 0.02 – 0.1 mg/mL	I (μA) = 38.16 [Smv] (mg/mL) - 0.12 R ² =0.987; Range: 0.002 – 0.45 mg/mL

Applications

Analysis of different pharmaceutical forms containing Dox or Smv

Control of encapsulation and release of Dox and Smv from drug delivery systems containing both substances

Conclusions

- The electrochemical behaviors of doxorubicin and simvastatin were studied;
- Two analytical strategies were successfully developed for the simultaneous detection of these molecules;
- Chronoamperometry proved to have a better sensitivity for the analysis of simvastatin;
- This detection strategy represents a promising tool in the development of new pharmaceutical forms or drug delivery systems containing both drugs whose association was proved to bring benefits in the treatment of cancer.

Thank you for your attention!

Achnowledgements:

This work was supported by a grant of the Romanian Minister of Research and Innovation, CCCDI – UEFISCDI, project number PNIII-P1-1.2-PCCDI-2017-0221/59PCCDI/2018 (IMPROVE), within PNCDI III. Iulia Rus acknowledges UMF Grant no. 1529/58/18.01.2019.

For questions about this work: rus.iulia@umfcluj.ro