APTAMER SELECTION THROUGH MAGNETIC BEADS-BASED SELEX TECHNOLOGY FOR GLYCOPEPTIDE ANTIBIOTIC

Geanina Stefan1, 2, Oana Hosu1, Noemí de-llos-Santos-Álvarez2, María Jesús Lobo Castañón2, Cecilia Cristina1

1Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; geanina.stefan@umfcj.ro
2Departamento de Química Física y Analítica, Universidad de Oviedo, c/ Julián Celañera 8, 33006 Oviedo, Spain

Introduction

Aptamers are short single-stranded DNA or RNA oligonucleotides that bind to a specific target molecule, reproducing antibodies’ role while improving the functional effect. Aptamers are obtained via an in vitro chemical process named as systematic evolution of ligands by exponential enrichment (SELEX). The SELEX technology achieved high improvements using magnetic-beads for the aptamer-target molecule selection.

Vancomycin (Van) is a powerful glycopeptide antibiotic, which can be toxic in high doses to renal and auditory systems, but also at low doses can cause hypersensitivity reactions. It is critical to measure with as high as possible accuracy the concentration of vancomycin from biological and environmental samples, having the aim to improve the patient compliance to treatment and to overcome the multi-resistant issue.

Magnetic-beads based SELEX technology

![Chemical structure of vancomycin and covalent binding site to MBs](image)

Figure 1. Chemical structure of vancomycin and covalent binding site to MBs

PCR conditions: Initial step of 120 s at 95°C; second step: 95°C, 15 s; 60°C, 30 s; 72°C, 45 s; followed by holding at 72°C for 120 s.

Selection of aptamers for vancomycin and its detection in biological and environmental samples

![Schematization of the Magnetic-beads based SELEX technology](image)

Figure 2. Schematization of the Magnetic-beads based SELEX technology

Preliminary results

Optimization of the functionalization of MBs-COOH with vancomycin

Vancomycin hydrochloride shows a maximum absorbance peak at 282 nm in HEPES buffer, pH 8.3. A regression equation was constructed in the range between 1 – 150 µM: A (u.a.) = 0.0057[Van/µM] + 0.0108, R² = 0.9998.

![UV absorption spectra of vancomycin hydrochloride at different concentrations](image)

Figure 3. UV absorption spectra of vancomycin hydrochloride at different concentrations: blank (blank); 1µM (blue); 5µM (olive); 10µM (purple); 25µM (dark yellow); 40µM (dark teal); 50µM (green); 75µM (turquoise); 100µM (gray); 125µM (green); 150µM (dark blue). Test were performed in triplicate.

![UV absorption spectra of vancomycin hydrochloride at different concentrations](image)

Table 1. Optimization of the vancomycin hydrochloride concentration immobilized at the MBs-COOH surface. Measurements were recorded by UV determinations at 282 nm in HEPES buffer, pH 8.3 (n=3).

<table>
<thead>
<tr>
<th>Added</th>
<th>Found (mM)</th>
<th>Unbound (%)</th>
<th>Bound (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mM</td>
<td>36.31</td>
<td>90.77 ± 0.54</td>
<td>9.00 ± 0.54</td>
</tr>
<tr>
<td>10 mM</td>
<td>8.86</td>
<td>88.60 ± 1.10</td>
<td>11.40 ± 1.10</td>
</tr>
<tr>
<td>2.5 mM</td>
<td>2.42</td>
<td>96.73 ± 0.06</td>
<td>3.27 ± 0.06</td>
</tr>
</tbody>
</table>

Conclusions and future perspective

- Optimization of all steps involved in the Magnetic beads - based SELEX technology is envisaged to obtain an aptamer for vancomycin with a low dissociation constant (Kd in the nM range);
- The final goal of the study is to develop an aptasensor for the sensitive detection of vancomycin in biological and environmental samples.

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number ERANET-RUS-PLUS-PLASMON-ELECTROLIGHT/46/2018, within PNCDI III. GS thanks UMF for the internal grant number 2461/17/17.01.2020. OH thanks to the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-PD-2019-0631, within PNCDI III.