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Graphical Abstract  Abstract.   

Synthetic Aperture Radar (SAR) remote sensing 

plays an important role in several research areas 

such as forest conservation, crop monitoring, 

land hazards monitoring, elevation product 

generation, and strategic applications. SAR has 

active imaging capability with an ability to 

discriminate terrain features, along with 

recognition of selected natural as well as man-

made targets. However, the special abilities of 

SAR become ineffective in specific cases due to 

interference of SAR frequency bands with the 

same magnitude range of radio frequencies 

originating from other types of electronic 

equipment. These types of equipment may include 

air-traffic surveillance radars, meteorological 

radars, communication systems, Radio Local 

Area Network (RLAN), and other 

electromagnetic (EM) radiation sources. The 

process of SAR frequency band contamination 

with other operating radio frequencies used for 

various purposes is called Radio Frequency 

Interference (RFI). Due to the increasing 

communication applications based on EM 

radiation, a wide range of EM spectrum is being 

used for this purpose. SAR frequency bands are 

very closely packed and even overlapping with 

other’s operating frequency bands allotted for 

other applications. Due to gaps in the unified 

international planning for EM spectrum band 

allocation for different applications, the problem 
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of RFI is rapidly rising in every communication 

application. The satellites of the Sentinel-1 

constellation use a radar, which operates in the 

IEEE (Institute of Electrical and Electronics 

Engineers) standard defined C band (central 

frequency 5.405 GHz) covering most civilian use 

frequencies. The RFIs discussed in the study 

manifest themselves on Sentinel-1 data in the 

form of lines having bright signatures, which are 

always perpendicular to the satellite orbit 

trajectory. These patterns may be hundreds of 

kilometres long and signify that a powerful radio 

source close to 5.405 GHz (such as some radars) 

is active and emitting somewhere along those 

lines. These interference patterns rigorously 

reduce the SAR image quality, which results in 

reducing the usefulness of SAR images, especially 

for high-resolution data-based applications. 

Therefore, an effective RFI pattern detection 

method is necessary for prior identification of 

RFI contaminated SAR images. In this study, 

openly accessible Sentinel-1 dual polarimetric 

(GRD) SAR image taken over busy 

maritime shipping port having international 

trade such as in Dubai has been used for the 

semantic segmentation of RFI patterns. The RGB 

composite image of the experimental site has 

been used to test and train the U-Net-like 

architecture of Convolutional Neural Network 

(CNN) for RFI pattern recognition. 

 

 

 

Introduction 

SAR is a leading technology on various fronts of land and ocean applications with the capabilities of, 

all-weather, full-time, long-range, wide-swath, and high-resolution imaging [1][2][3][4][5]. SAR has 

established itself to be a very important, effective, and efficient technique in the field of remote sensing 

[6]. It is found to be potentially competent for various land and ocean applications. Detection and 

characterization of natural and anthropogenic oil seepages [7], ship detection and monitoring [8][9], 

analysis of ocean current[10], and ocean ice monitoring [11] are some of the widely employed ocean 

applications using SAR remote sensing [12]. Whereas, forest monitoring [13], land use land cover 

mapping [14], crop monitoring [15], geomorphological analysis of ground features [16], flood 
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monitoring [17], digital elevation model generation [18], land deformation [19] (caused by earthquakes, 

landslides, or glacier advancement) are the examples the land applications that are employed using SAR 

technology.  

Nowadays, RFI is a rapidly emerging challenge in the field of imaging radar, since more and more 

wireless electronic systems share the frequency spectrum for various kinds of applications [20]. Air-

traffic surveillance radars, meteorological radars, communication systems, Radio Local Area Network 

(RLAN), and other EM radiation sources interfere with the SAR signal if the frequency spectrum of 

these systems overlaps with the frequency spectrum of the SAR system [21]. RFI is a serious cause of 

the SAR image quality degradation and it is primarily responsible for the corrupted information of 

ground targets, misinterpretation of the scattering properties, and inaccurate feature extraction [22]. The 

presence of strong RFI would yield inaccurate estimates of critical Doppler parameters (e.g., centroid 

and modulation rate), which would result in blurry and defocused SAR images [23]. The presence of the 

haze-like RFI in SAR images leads to the misinterpretation of interesting targets.  

Advanced SAR systems, such as DLR’s Tandem-L mission, NASA’s EcoSAR and DBSAR are capable 

of suppressing the RFI on board or in post-processing by utilizing the Digital Beamforming (DBF) [20], 

but the previously launched operating SAR satellite missions such as Sentinel-1 and RadarSAT-2 are 

facing the problem of RFI.  

The Sentinel-1 constellation SAR satellites use a radar that operates on a central frequency of 5.405 

GHz and is defined as C-band by the Institute of Electrical and Electronics Engineers (IEEE) [24]. Based 

on power and relative distance, radio sources and receivers (used for different kinds of applications) can 

affect each other’s performance if they operate on similar frequencies. The appearance of typical 

interference lines in the Sentinel-1 data images is a consequence of the interference between the SAR 

wave and powerful radio emitters which are operating on a frequency close to 5.405 GHz. The RFI 

patterns discussed in the study manifest themselves in the imagery in the form of lines with bright 

signature and which are always perpendicular to the satellite orbit trajectory. These patterns can be 

hundreds of kilometres long which signify that any powerful radio source (such as some radars) which 

is operating on a frequency close to 5.405 GHz, is active somewhere along these lines [25]. Since an 

effective RFI pattern detection method is necessary for prior identification of RFI contaminated SAR 

images, the presented study focuses on the detection of RFI patterns (generated from powerful sources) 

which appear in publicly available Sentinel-1 satellite datasets using U-Net-like machine learning 

Convolutional Neural Network (CNN) algorithm. 

The network used in the study is a U-Net-like architecture which is not exactly similar to the U-Net 

architecture. The model architecture is taken from the Keras official website (https://keras.io/). The 

architecture was originally applied for the segmentation of “Oxford Pets dataset”.  In the presented study 

this architecture is applied for the segmentation of RFI patterns which appear in publicly available 

Sentinel-1 satellite datasets. The CNN architecture used in the presented study is shown in figure 5. 

Study Area and Datasets  

The openly accessible Sentinel-1 GRD image, which is selected for the study is acquired over the North-

West shoreline of UAE covering Dubai and Abu Dhabi as shown in figure 1. The image covers the range 

of latitude and longitude from 26.383N to 24.453N and 53.664E to 56.496E respectively. More than 

60% of the study area is the ocean and the rest is land. The study area is selected with the help of the 
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“5Ghz Interference Locator” Google Earth Engine (GGE) application [26] by visualizing the RFI 

patterns over the area. The data properties of the Sentinel-1 image such as product type, product name, 

acquisition mode, antenna pointing direction, and flight direction are listed in table 1. 

Table 1. Data properties of the Sentinel-1 image used for the study. 

Sentinel-1 Image Data Properties  

Product Name S1A_IW_GRDH_1SDV_20200527T142453_ 

20200527T142518_032752_03CB42_DDD7 

Product Type GRD 

Mission Sentinel-1A 

Antenna Pointing Right 

Acquisition Mode IW 

Pass Ascending 

Methodology 

The methodology adopted for the study is shown in figure 2. The ‘5Ghz Interference Locator’ GGE 

application has been utilized for the selection of the study area. which helps in providing the geolocations 

of potential sites on the ground where RFIs associated with the frequency bands near to 5 GHz are taking 

place. This application exploits ascending and descending pass images of Sentinel-1 constellation and 

provide a user-friendly online Graphical User Interface (GUI) for the visualization of RFI contaminated 

regions due to any possible reason. Since the Sentinel-1 image covers the Jabel Ali Port, therefore, 

maritime radar operating on the same frequency as of the Sentinel-1 radar may be the potential source 

of the appearance of RFI in the image acquired over this region. Most of the Sentinel-1 images acquired 

over this region are severely affected with RFI as examined using the “5Ghz Interference Locator” GGE 

Figure 1. Location of the study area with the RFI contaminated Sentinel-1 image. 
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application.  The RFI patterns over the study area as observed using the ‘5Ghz Interference Locator’ 

GGE application are shown in figure 3. The RFI patterns for ascending and descending satellite passes 

are visible with two different colours making a cross sign with each other. According to a web article 

[25], the geo-location of the source of the RFI overlaps with the cross point of these patterns as shown 

in figure 3. These patterns are perpendicular to the corresponding satellite orbit trajectory. 

Figure 3. The RFI patterns over the study are as observed from the ‘5Ghz Interference Locator’ GGE 

application. 

Figure 2. Flow chart for the methodology adopted in the presented study. 

http://sciforum.net/conference/mol2net-06


MOL2NET, 2020, 6, ISSN: 2624-5078                                                                                     6 

http://sciforum.net/conference/mol2net-06        

 

 

Data Pre-processing 

The dual-band (VV- & VH-band) Sentinel-1A image of the selected study area was georeferenced 

(terrain corrected) with the help of “Range-Doppler Terrain Correction" toolbox available in the Sentinel 

Application Platform (SNAP) software of version 6.0. To avail the full information of all the bands, 

present in the data, an RGB stack (Red: VV-band, Green: VH-band, and Blue: VV/VH-band) was 

generated and exported in ".tif" format.  

The ArcGIS Pro is the latest professional desktop Geographic information system (GIS) software 

from Esri. The software consists of toolboxes that support for data preparation and management for deep 

learning. The "Training Sample Manager" available in "Image Classification" toolbox of this software 

is used for the RFI feature annotation. Since the input and output of image segmentation model should 

be in a raster format for the training run, therefore, "Feature to Raster" function in ArcGIS Pro has been 

used to convert the labelled vector data from feature (vector) class format to raster format. The sentinel-

1 image has a large swath width (250km) [27] and they cannot be fed directly to the model, therefore, 

the Sentinel-1 GRD image and corresponding labelled raster data (RFI annotation) were converted to 

smaller images (chips) by using "Export Training Data for Deep Learning" toolbox in ArcGIS Pro. The 

annotation raster chips consist of binary (0 or 1) pixel values. The pixels with value 1 and 0, represents 

the RFI features and background respectively as shown in figure 4. This tool allows choosing the size of 

each chip as well as a stride in X and Y axes. In this presented study, the chip size of 256 and stride size 

0 along X and Y axes has been chosen. All the chips corresponding to the image raster and annotation 

raster were exported in ".png" format. A total of 2575 pair of image raster chips and corresponding 

annotation raster chips were exported. Some of the image chips and their corresponding annotation raster 

chips are shown in figure 4. 

Figure 4. The visual representation of Sentinel-1 RGB image chips of image size 256X256 and 

corresponding RFI feature annotation chips. (a), (b), (c), (d), (e), and (f) represents the 6 

different pairs of Sentinel-1 RGB image chip (left) and corresponding RFI feature annotation chip (right). 

http://sciforum.net/conference/mol2net-06


MOL2NET, 2020, 6, ISSN: 2624-5078                                                                                     7 

http://sciforum.net/conference/mol2net-06        

 

 

CNN Architecture and Specifications 

Out of 2575 pairs of image raster chips and corresponding annotation raster chips, 1000 pairs were kept 

for the testing purpose of the U-Net-Like CNN model and rest were used for the training purpose. 

Optimizers are a crucial part of the neural network and the understanding of how they work helps to 

choose which one to use for the application. The "RMSprop" optimizer is used in the CNN model utilized 

for the presented study. It is an adaptive learning rate method and a well-known algorithm for mini-batch 

learning. It is a mini-batch version of  “rprop” optimizer [28]. The central idea of RMSprop is to keep 

the moving average of the squared gradients for each weight and then divide the gradient by square root 

the mean square [28], which is why it is called RMSprop (Root Mean Square). RMSprop is a good and 

fast optimizer.  It is one of the most popular optimization algorithms used in deep learning since its 

popularity is only surpassed by Adam. 

In the presented study, the sparse categorical cross-entropy loss function is applied in the model. It 

computes the cross-entropy loss between the labels and predictions. This cross-entropy loss function is 

suggested to use when there are two or more label classes. The labelled raster datasets consist of two 

classes namely ‘0’ and ‘1’. The ‘0’ and ‘1’ classes represent the non-RFI pixels and the RFI pixels in the 

image chips respectively. Softmax is the only activation function recommended to use with the 

categorical cross-entropy loss function.  

Results and Discussion 

The model was trained on 1575 pairs of image and annotation raster chips with 40 epochs. The training 

loss, validation loss, training accuracy, and validation accuracy values achieved on 40th epoch were 

found to be 0.0043, 0.0410, 0.9984, and 0.9921 respectively as shown in figure 8 and 9. Since the U-

Net-Like CNN architecture is well-known for the better performance on a fewer number of input training 

datasets, the model performance is observed to be good with 1575 input training data chips. The 

Figure 5. Visual representation of CNN model architecture used in the study. 
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corresponding pixels of input RFI mask chips and the predicted mask chips were compared and the 

overall accuracy of 0.92 was achieved. The classification report with precision, recall, f1-score and 

support for RFI (pixel value 1) and background class (pixel value 0) for the validation input masks and 

corresponding predicted masks is shown in figure 7. The precision, recall, and f1-score for Background 

class were found to be 0.94, 0.98, and 0.96 respectively. Whereas, the precision, recall, and f1-score for 

RFI class were found to be 0.78, 0.53, and 0.63 respectively. 

The input image chips used for the validation and their corresponding RFI masks and predicted RFI 

masks are shown in figure 6. It is evident from the CNN model prediction as shown in figure 6 that 

presented CNN model performed better for the prediction of the sharp edges of RFI patterns. Along with 

the combinations of RGB pixel values corresponding to the RFI feature in the image chips, the model is 

also capable of capturing the texture information of the RFI features.  

Figure 6. Examples of few input validation images with corresponding given RFI masks 

and model predicted RFI masks. 

Figure 7. The classification report with precision, recall, f1-score and support for RFI (pixel value 1) and 

background class (pixel value 0) for the validation input masks and corresponding predicted masks. 
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 Conclusions  

The automatic identification of RFI contaminated Sentinel-1 images is a prior step while processing a 

huge number of Sentinel-1data images for various land and ocean applications. The presented study 

suggests that machine learning U-Net-Like CNN architecture model can be effectively used for the prior 

identification of RFI contaminated Sentinel-1 images in an automatic way. Along with the presence of 

RFI patterns in the image, the information about the geo-locations of these RFI patterns can also be 

effectively identified with the help of machine learning U-Net-Like CNN architecture model. The 

performance of the model can be further improved by increasing the number of input training data chips 

containing complexity and high variability of the RFI features. Since the Sentinel-1 “Quick Look” RGB 

images, accessible from https://scihub.copernicus.eu/, are resampled to the lower resolution and smaller 

in size, the presented model can also be trained on these images for the quick prediction of RFI patterns 

in the images. 

 

Figure 8. The training and validation loss of model with each epoch. 

Figure 9. The training and validation accuracy of the model with each epoch. 
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