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Abstract: Breast cancer is a leading cause of death in women worldwide and yet its pathophysiology 

is poorly understood. Although single-cell studies have highlighted the contribution of membrane 

depolarisation to the proliferation of breast cancer, dynamic signalling at a network level has not 

been extensively researched. It is urgent therefore to decode the intercellular signalling patterns 

linked to metastasis, particularly at a cell cohort level. This paper introduces a novel strategy for 

conducting such recordings on highly metastatic MDA-MB-231 cells, via an ultra-low noise 

biosensor based on a large electrode area which maximises the Helmholtz double-layer capacitance. 

The extracellular sensitivity of our biosensor allows the detection of pA level Random Telegraph 

Signal (RTS) noise superimposed with an omnipresent 1/f noise. The RTS noise is validated and 

modelled using a Markov chain. The analysis of slow cooperative potentials across the large area 

electrode suggests the involvement of cohort calcium signalling, and the 1/f noise analysis suggests 

a strong contribution of resting membrane noise. Overall, this work shows the potential of the new 

recording platform and statistical analysis for better understanding and predicting the underlying 

signalling mechanisms of metastatic breast cancer cells. In future, this platform could highlight the 

effects of compounds, or drugs, on the underlying activity of cancer cell cohorts in a clinical setting. 
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1. Introduction 

Breast cancer remains a major cause of death worldwide, with several challenges at various 

stages of the clinical process, ranging from the initial diagnosis to treatments and therapies. Triple 

Negative Breast Cancer (TNBC) is particularly difficult to treat given its aggressively metastatic 

nature, and the absence of common receptors that hormone therapies could target [1,2]. Although 

extensive work has been done with regards to the recording of individual ion channels in cancer cells 

using patch-clamp approaches, there are few studies at a cell population level. Studies examining 

cancer cell populations offer the possibility to investigate membrane currents and voltages without 

the application of external stimulus. These models also better represent the in vivo reality of tumour 

proliferation, invasion, and metastasis, since these processes typically involves a cell cohort. A 

combination of population and individual cell recordings is therefore crucial for examining processes 

associated with metastatic cancer cells. 
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One approach for detecting the extracellular activity of cancer cell cohorts is using cell-based 

biosensors. These devices enable the non-invasive monitoring of cellular behaviour through the 

detection of various electrochemical signals, such as current, potential, capacitance, and impedance, 

corresponding to biological processes involving ion transfer and reduction/oxidation reactions. Cell-

based biosensors have therefore been used for studies of cell type, concentration, viability, 

proliferation, and apoptosis [3–5]. One cell-based biosensor of interest for electrically monitoring cells 

is the Micro-Electrode Array (MEA). MEAs are electrochemical biosensors that typically consist of 

planar electrodes embedded in an insulating substrate and in close contact with cells in culture 

medium, enabling the detection of extracellular activity. Research in this field has focused primarily 

on improving spatial resolution and coupling between cells and electrodes [6,7], leading to an 

increase in electrode density and decrease in electrode area. Some work has also focused on 

functionalising the surface of such devices with antibodies and other compounds to target specific 

extracellular analytes, rather than cells [8,9]. Commercially available MEAs, to decode cells 

extracellular activity, typically consist of several, small area electrodes with diameters ranging 

between 10 and 100 µm [6]. This results in a very large electrode impedance, for recording high 

frequency events in the kHz range typically seen in neuronal firing, whilst filtering out low frequency 

content. To overcome this issue, we employ large area electrodes with areas in the order of mm2 to 

minimise impedance, and hence maximise the Helmholtz-Gouy-Chapman double-layer capacitance 

[10,11]. 

Preliminary population-level recordings from aggressively metastatic breast cancer cells, 

modelled by the MDA-MB-231 cell line, indicate two prominent patterns of electrical activity [10]. 

One consisting of fast, asynchronous bursts originating from Voltage-Gated Sodium Channels 

(VGSCs), and another with a slower pulse duration, resembling Random Telegraph Signal (RTS) 

noise. In the time domain, this sort of noise consists of step-like transitions between two or more 

levels, showing a square-like shape. This has been previously observed and investigated in the 

context of Metal Oxide Semiconductor (MOS) devices, where they correspond to the trapping and 

releasing of charge carriers at the silicon/oxide interface or in the oxide itself [12]. It has been proposed 

that two-level RTS noise in MOS devices can be modelled as the combination of a Markovian process 

and background Gaussian noise [12]. RTS noise has also been observed in chemical reactions and 

individual ion channel recordings [13]. Ionic fluxes through cell membranes and biochemical 

pathways also showed an underlying 1/f noise pattern [14,15]. 

In this paper, we build upon prior two-level RTS analyses to examine multi-level RTS signalling 

recorded from MDA-MB-231 cells using an ultra-low noise biosensor based on a large-area MEA. We 

develop a state machine-based algorithm that generates a “clean” RTS model from windows of 

recorded data and computed thresholds. This is then used to generate a Markov Chain for each 

window, with the probabilities of remaining in and switching states, which illustrates how the RTS 

behaviour evolves over recordings of 1–2 h. This approach enables the extraction of pulse durations, 

as well as the separation of RTS noise and 1/f-like background noise, consistent with prior research 

on 1/f noise in ion channels. 

2. Materials and Methods 

MDA-MB-231 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Sigma) 

containing 5% v/v fetal bovine serum (FBS; Gibco) and 4 mM L-Glutamine (Sigma), and grown 

according to the protocol described in [10]. The cells were harvested once a confluence of 70% had 

been reached, and a cell density of 1 × 106 cells/mL was deposited on the proposed MEA device for 

each experiment. 

The MEA device used for conducting the RTS recordings consisted of a silicon dioxide substrate 

containing four pairs of planar, circular electrodes of area 2 mm2. The device was manufactured by 

evaporating a 10 nm layer of chromium followed by a 50 nm layer of gold through a shadow mask 

with the desired electrode pattern. At this stage, the electrodes were also connected to measurement 

pads using strip lines of negligible area. In each pair of measurement electrodes, one of the electrodes 

acted as a measuring electrode, and the other as a counter electrode. An equivalent circuit model can 
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be used to describe the interface between the electrodes and cells, as described in [11]. Given the large 

electrode area, the recorded signal corresponds to the sum of each active, adherent cell on the 

electrode surface. Uncorrelated activity therefore appears as noise and low amplitude, asynchronous 

spikes. 

The electrical current generated by MDA-MB-231 cell populations was recorded over time, for 

up to 72 h, with all recordings repeated in three independent experiments. 1–2 h sections of RTS data 

were then extracted, detrended, separated into rectangular, 5 min windows, and bandpass filtered in 

preparation for the generation of RTS models. A state machine was used instead of a single point 

detector, given the overshoots and faster pulses did not constitute RTS activity but would be 

erroneously detected using this approach. These overshoots can be seen in Figure 1 on the rising and 

falling edges of each RTS pulse and arise from low pass filtering in the recording equipment. The 

sparse, asynchronous spikes correspond to uncorrelated cell activity. Therefore, a minimum time 

duration of 0.5 s for RTS pulses was assumed, and the state machine would only switch to a different 

RTS levels if sufficient subsequent samples were seen at that level. 

 

Figure 1. RTS noise observed in MDA-MB-231 recordings. (a) Recording showing RTS activity over a 

period of 7 min; (b) Detailed section of RTS pulses. 

Thresholding Approach 

Standard signal detection theory was used to determine the thresholds for transitioning between 

RTS states, as described in [16,17]. Following this analysis, 1/f noise is considered to have a Gaussian 

probability density function (PDF) as follows: 

𝑊1/𝑓(𝐼) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 (

𝐼2

2𝜎2
) (1) 

Thus, the PDF of the overall signal, containing RTS and 1/f noise, is the weighted sum of two 

Gaussian distributions with different means: 

𝑊𝐼(𝐼) =  
𝑞

√2𝜋𝜎2
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where a and b correspond to two RTS levels. The probabilities q and p for two states are: 

𝑝 =  〈𝛼〉/〈〈𝛼〉 + 〈𝛽〉〉, 𝑞 =  〈𝛽〉/〈〈𝛼〉 + 〈𝛽〉〉 (3) 

where α is the time duration at RTS level a, and β is the duration of RTS level b. To distinguish 

between two states, a likelihood relation can be used corresponding to the ratio between the two 

terms in Equation (2), which simplifies to the following: 

𝐼0 =
𝑎 − 𝑏

2
+

𝜎2

𝑎 + 𝑏
𝑙𝑛

𝑎

𝑏
  (4) 

Equation (4) was used for each pair of RTS levels detected in a window in order to produce 

multiple thresholds for generating a multi-level RTS model. An example of the kind of RTS model 

obtained using this thresholding algorithm, and subsequently a state machine for determining level 

transitions, is shown in Figure 2. 
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Figure 2. Detailed RTS section highlighting the parameters used for the thresholding approach. The 

original RTS waveform (black) is shown with the resultant RTS model (magenta), as well as two 

detected thresholds (𝐼𝑎 and 𝐼𝑏 in blue), three RTS states (red), and the duration of pulses at each of 

the states (𝛼, 𝛽, and 𝛾). 

3. Results and Discussion 

Our low impedance biosensor shows an electrochemical background noise level of 1 pA (peak-

to-peak) [11] which allowed us to detect minute current oscillations across large populations of MDA-

MB-231 cell cohorts [10]. The RTS behaviour was examined and extracted. Following two-level RTS 

theory, this type of noise can be characterised in terms of its “on” and “off” times, which correspond 

to the duration at which the signal is above the baseline amplitude level and returned to this baseline, 

respectively. This applies to two-level RTS signals given that there are only two amplitude levels, 

however, in multi-level RTS the signal doesn’t return to a baseline value, but rather any other number 

of amplitude levels. Given the multi-level nature of the RTS activity seen in these experiments, our 

analysis therefore focuses on time “on” for positive and negative pulses. RTS activity is also defined 

by a Lorentzian spectrum in the frequency domain, indicating the frequency above which the 

spectrum rolls off as 1/f2, conditioning the harmonic mean of “on” and “off” times. Alternatively, a 

theoretical current power spectral density (PSD) can also be derived for a two-level signal as follows 

[18]: 

1

𝜏𝑒𝑓𝑓

=  
1

𝜏𝑂𝑁

+  
1

𝜏𝑂𝐹𝐹
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where 𝜔 = 2𝜋𝑓 is the angular frequency and 𝛿𝐼 is the amplitude of the current pulses. Figure 3a 

shows the distribution of time “on” for positive pulses, and Figure 3b shows this for negative pulses. 

The theoretical model based on Equation (6) is shown in Figure 4a, using a time “on” of 1.9 s, which 

is in good agreement with the results seen in Figure 3a. 

The generated RTS model is not only useful for determining time “on” more accurately but can 

also be leveraged to uncover the nature of underlying background noise from uncorrelated signalling 

events. This was achieved by subtracting the RTS model represented in Figure 4a, from a 

corresponding unfiltered window of data, showing background noise with a 1/f trend, as plotted in 

Figure 4b. 

From the generated RTS model, it is also possible to create discrete Markov Chain models for 

identifying the probabilities of moving between RTS states. Figure 5 shows exemplar Stochastic 
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Matrices (SM) seen across the RTS data. Given that RTS pulses can last up to 10 s, high probabilities 

are seen across the diagonals of each SM, corresponding to the likelihood of remaining in the same 

state. Another insight this analysis offers is that when there is a state change, this is likely to be an 

adjacent state rather than one several levels away. For instance, in Figure 5a, it is not possible to 

transition from the −120 pA to the 50 pA state, and vice versa. 

  
(a) (b) 

Figure 3. Characterisation of pulse durations and amplitudes (a) Distribution of pulse durations for 

positive RTS pulses; (b) Distribution of pulse durations for negative RTS pulses; 

  
(a) (b) 

Figure 4. Current PSDs from extracted components in the recordings (a) Generated RTS model PSD 

showing a Lorentzian shape; (b) Residual noise after generated RTS model is subtracted from the 

original signal, showing a 1/f trend. 

  
(a) (b) 

Figure 5. Example state transition matrices seen across RTS recordings generated by examining each 

data sample in generated RTS models. The main diagonal shows the likelihood of remaining in each 

RTS level, whereas the other positions represent the likelihoods of switching from the state in each 

row to the ones in each column. 
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The state machine approach worked well for identifying RTS behaviour whilst also mitigating 

the effects of overshoots and abrupt spikes. The fact that the observed RTS behaviour can be modelled 

using this approach suggests that the process is Markovian. Previous two-level RTS processes have 

also been described using Markov processes, but to the best of our knowledge, this is the first time 

that multi-level RTS has been recorded from biological cell cohorts and subsequently modelled. This 

approach could be useful for rapidly examining the nature of RTS-like behaviour in biological or 

other processes, ranging from the pulse durations to common patterns seen in windowed sections of 

data. This probabilistic analysis could also provide some insights into the biological processes 

underlying each state and transitions between different states. 

4. Conclusions 

This work describes a low noise biosensor employed to detect multi-level RTS noise from highly 

metastatic MDA-MB-231 cell cohorts. The biosensor leverages large electrode areas of 2mm2 to 

increase the concomitant detection sensitivity, and hence record low-amplitude RTS noise from 

cancer cell cohorts. The RTS noise is modelled and investigated using a state machine approach. The 

state machine approach allowed us to calculate the time “on” of positive and negative RTS pulses, as 

well as the state transition matrices for investigating the likelihood of transitioning between the 

different RTS states, and how these vary across 5 min windows of RTS data from each recording. It 

was found that there is a high probability of remaining in the current RTS state, given the durations 

in the order of s, and if a state transition occurs, this will likely be to an adjacent state. This work 

highlights the potential of both the biosensing platform and statistical analysis for better 

understanding the underlying mechanisms behind cancer cell cohorts. 
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