

Antibacterial and antioxidant activities of phenolic compounds extracted from autumn fruits by-products

Vanessa Silva¹⁻⁴*, Apolo Martins¹, Adriana Silva¹⁻⁴, Alfredo Aires⁵, Rosa Carvalho⁶, Virgílio Falco⁷, Gilberto Igrejas²⁻⁴, Patrícia Poeta^{1,4}

¹Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;

²Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro,

5000-801 Vila Real, Portugal;

³Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; ⁴Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2829-516 Caparica, Portugal; ⁵Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal;

⁶Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. ⁷Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal. *vanessasilva@utad.pt

Introduction

In the last few decades there has been a dramatic increase in antibiotic resistant bacteria, particularly methicillinresistant *Staphylococcus aureus* (MRSA), that not respond to conventional treatments. In this study, the antioxidant and antibacterial activities of phenolic compounds extracted from by-products resulting from the autumn fruit industry were evaluated.

Material and Methods

Extraction of phenolic compounds from pomegranate, quince, loquat and persimmon industry by-products was performed using a mixture of ethanol/water (80:20). Antimicrobial susceptibility was tested against 10 MRSA strains: 5 MRSA isolated from human diabetic foot ulcers, 3 from healthy wild hares and 2 from consumption rabbits. Minimum inhibitory concentrations were determined by disc diffusion method using different concentrations of extracts (100, 75, 50, 25 and 10 mg/mL). Antioxidant activity was performed using the DPPH, CUPRAC and FRAP methods. Each determination was performed in triplicate.

Results

Most of the extracts had an inhibitory effect on the growth of MRSA strains from all origins except for quince seed and peel extracts and pomegranate seed extracts. Pomegranate peel extracts had the highest inhibitory effect on all MRSA strains presenting halos with diameter around 18mm followed by persimmon calyx extracts (Table 1). Regarding the antioxidant activity, the extracts with the highest antioxidant power were pomegranate leaf extract, followed by persimmon calyx extracts, quince leaf and loquat flower.

	Fruit	Fruit component	Inhbition zone (mm)									
			strain 1	strain 2	strain 3	strain 4	strain 5	strain 6	strain 7	strain 8	strain 9	strain 10
	pomegranate	leaf	12	17	12	13	15	17	12	15	14	12
		peel	18	17	17	18	19	15	20	19	19	17
		seed	7	0	0	0	0	0	0	0	0	0
A CONTRACTOR		leaf	10	12	10	10	9	14	13	12	14	10
	quince	peel	0	8	0	0	0	10	11	9	0	0
		seed	0	0	0	0	0	0	0	0	0	0
		calyx	12	16	11	15	17	17	16	16	14	12
	norsimmon	leaf	10	14	10	11	12	16	15	12	16	11
	persiminon	peel	0	8	7	0	0	10	10	9	0	0
		seed	10	15	10	10	10	-	-	_	-	_
	loquat	Leaf	10	11	11	12	9	13	14	14	13	10
1 a	ioquat	flower	8	11	9	9	11	12	11	11	10	10

Table 1. Inhbition zones (mm) of autmn fruits by-products against 10 multidrug resistant MRSA strains.

Conclusions

Extracts from by-products of several autumn fruits revealed a high antibacterial and antioxidant activities. These compounds may be used as antibiotic substitutes or adjuvants to combat antibiotic resistant bacteria or in food industry as food preservers.

Acknowledgements

This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020). Vanessa Silva is grateful to FCT (Fundação para a Ciência e a Tecnologia) for financial support through PhD grant SFRH/BD/137947/2018.

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

