

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

sponsored by pharmaceuticals

Chemical characterization and immunomodulatory potential of the moss *Hypnum cupressiforme* Hedw. extracts

<u>Tanja M. Lunić</u>¹, Mariana M. Oalđe², Marija R. Mandić¹, Aneta D. Sabovljević², Marko S. Sabovljević², Uroš M. Gašić³, Sonja N. Duletić-Laušević², Bojan Dj. Božić^{1*#}, Biljana Dj. Božić Nedeljković^{1*#}

¹ Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;

² Institute of Botany and Botanical Garden "Jevremovac", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.

³ Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia

*Corresponding authors: <u>bbozic@bio.bg.ac.rs</u>; <u>biljana@bio.bg.ac.rs</u>

[#]These authors contributed equally to this study

Chemical characterization and immunomodulatory potential of the moss *Hypnum cupressiforme* Hedw. extracts

Graphical abstract

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: M

Abstract:

This study aimed to examine the chemical composition and immunomodulatory potential of the moss *Hypnum cupressiforme* Hedw. extracts. The corresponding extracts were obtained utilizing Soxhlet extractor and further characterized by spectrophotometric assays and liquid chromatography coupled to mass spectrometry (LC-MS). The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), total reduction power, and β -carotene bleaching assays. The inhibitory activities on α -glucosidase, α -amylase, acetylcholinesterase, and tyrosinase were tested for potential antidiabetic and antineurodegenerative activity. Additionally, biocompatibility, antitumor, and anti-inflammatory potential were tested on MRC-5, HCT-116, MDA-MB-231, and BV2 cells, respectively.

Major compounds identified by LC-MS in *H. cupressiforme* extracts were kaempferol and five phenolic acids: *p*-hydroxybenzoic, protocatechuic, *p*-coumaric, gallic, and caffeic acid. Biochemical assays revealed the significant immunomodulatory potential of examined extracts. Moreover, **significant antiproliferative potential** against human breast cancer cells – MDA-MB-231 (inhibitory rate up to 50%) and acceptable biocompatibility were observed. Also, a **significant decrease in NO production**, observed in lipopolysaccharide-stimulated BV2 cells, implies potential anti-neuroinflammatory application. Obtained results qualify the moss *H. cupressiforme* as a highly promising candidate for more detailed examination and also putative therapeutical application.

Keywords:Hypnumcupressiforme;antioxidant;antidiabetic;anti-neuroinflammatory/antineurodegenerative;antitumor activityanti-

sponsored:

Introduction – *Hypnum cupressiforme*

- □ Mosses belong to the second largest group of higher plants bryophytes
- These plants are recognized as promising sources of novel biologically active compounds
- **Hypnum cupressiforme Hedw**. is a common moss species found in a variety of habitats
- Studies have reported good antimicrobial, antioxidant, and antiproliferative potential of this moss

Chemical composition of mosses

Moss phytochemistry has been overlooked in the past

Secondary metabolites found in bryophytes can be divided into two main groups – polyphenols and lipids

□ The majority of secondary metabolites from mosses belong to flavonoids,

terpenoids, and bibenzyls

Diverse biological activities of these metabolites: cytotoxicity, antimicrobial,

antifungal, antitumor, antioxidant, anti-inflammatory, antidiabetic, and many other

The aim of this study

pharmaceuticals

sponsored: MDPI

Extracts chemical characterization

Extraction yield for *Hypnum cupressiforme* moss extracts

	Solvent	Moss weight (g)	Extract weight (g)	Yield (%)
E1	Ethanol (96%)	10	0.42	4.2
E2	Water-ethanol (1:1, vol%)	10	0.80	8.0
E3	Ethyl-acetate	10	0.06	0.6
E4	Water	7.6	2.00	26.3

Chemical characterization of moss *Hypnum cupressiforme* extracts

	TPC (mg GAE/g extract)	TPAC (mg CAE/g extract)	TFC (mg QE/g extract)	TFIC (mg QE/g extract)	TTC (mg UAE/g extract)
E1 (Ethanol)	6.25 ± 0.48	67.41 ± 6.97	35.00 ± 1.34	ND ¹	88.37 ± 1.55
E2 (Water–ethanol)	7.38 ± 0.34	7.08 ± 2.36	12.43 ± 0.49	ND	75.93 ± 2.97
E3 (Ethyl-acetate)	15.33 ± 0.95	339.93 ± 14.03	58.86 ± 2.82	14.11 ± 1.33	235.95 ± 4.09
E4 (Water)	18.21 ± 0.73	8.31 ± 3.48	2.04 ± 0.29	ND	43.33 ± 0.86

CAE – caffeic acid equivalents; GAE – gallic acid equivalents; ND – not detected; QE – quercetin equivalents; TPAC – total phenolic acid content; TFC – total flavonoid content; TFIC – total flavonoid content; TFC – total phenolic content; TTC – total triterpenoid content; UAE – ursolic acid equivalents

sponsored:

Extracts chemical characterization

LC-MS analysis of the investigated *Hypnum cupressiforme* extracts

mg/100 g extract	E1 (Ethanol)	E2 (Water-ethanol)	E3 (Ethyl-acetate)	E4 (Water)
Gallic acid	0.62	0.70	0.50	1.21
Protocatechuic acid	3.75	2.89	2.39	3.91
5-O-Caffeoylquinic acid	0.14	0.07	0.02	0.04
p-Hydroxybenzoic acid	4.56	3.17	5.78	4.62
Caffeic acid	0.65	0.42	0.13	1.10
Quercetin 3-O-rutinoside	0.09	0.06	0.01	0.03
p-Coumaric acid	2.60	2.33	0.46	4.40
Quercetin 3-O-glucoside	0.27	0.21	0.02	0.04
Isorhamnetin 3-O-glucoside	0.12	0.06	0.02	0.04
Eriodictyol	0.13	0.11	0.05	0.07
Apigenin	0.51	0.47	0.11	0.11
Naringenin	0.57	0.62	0.12	0.08
Kaempferol	7.35	6.60	0.21	0.47
Acacetin	0.21	0.15	0.09	0.02

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Antioxidant activity

#,+,*p<0.05 different moss extracts vs. different standard substances. Symbols *, #, + were used for standards BHT, BHA, and AA (ascorbic acid), respectively

Significant antioxidant activity obtained for ethyl-acetate and aqueous extracts (E3 and E4)

in the β -carotene bleaching test

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Antidiabetic activity

sponsored:

MDP

pharmaceuticals

Antineurodegenerative activity

 \checkmark Significant inhibition of tyrosinase and acethylcholinesterase Enzymes associated with the development of Alzheimer's and Parkinson's disease Potential therapeutic \checkmark application in the prevention/treatment of neurodegenerative diseases

*p<0.05 standard vs. different moss extracts

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: M

Anti-neuroinflammatory activity – BV2 cells

Cell viability – MTT assay

*p<0.05 LPS-stimulated control cells vs. non-stimulated control cells; **p<0.05 extracts vs. only LPS-stimulated control cells

ROS production – NBT assay

✓ Extracts increased the viability of

LPS-stimulated BV2 cells

- The production of NO by activated microglia is diminished
- \checkmark Another evidence for extracts

anti-neuroinflammatory potential

sponsored: MD

Antitumor activity – MDA-MB-231 cells

ROS production – NBT assay

Significant antiproliferative activity against

MDA-MB-231 cells

- ✓ All extracts increased ROS and NO production
- Potential antitumor agents in the

sponsored:

prevention/adjuvant treatment of breast cancer

MDP

pharmaceuticals

Conclusions

- Flavonoids, phenolic acids, and triterpenoids important classes of secondary metabolites discovered in *H. Cupressiforme* extracts
- \checkmark Extracts exhibited **good antioxidant activity** regarding the prevention of βcarotene bleaching
- ✓ High tyrosinase and acethylcholinesterase inhibition potential
- ✓ High α-glucosidase inhibition activity
- Promising anti-inflammatory potential (reducing the production of NO by LPSstimulated BV2 cells)
- ✓ Significant antiproliferative effects against MDA-MB-231 cancer cells

Altogether, *H. cupressiforme* is a highly promising source of novel biologically active compounds

sponsored: MDPI

Acknowledgments

This work was supported by the grant of the Ministry of Education and Science of the Republic of Serbia (Contract numbers: 451-03-68/2020-14/200178 and 451-03-68/2020-14/200007).

pharmaceuticals

sponsored: MDP

