En-Type Ligands as Dimensional Reduction Agents in Coordination Polymers containing Dicarboxylic Acids.

THE 2ND INTERNATIONAL ONLINE CONFERENCE ON CRYSTALS 2020

MARIUS KREMER MARIUS.KREMER@RWTH-AACHEN.DE

Contents

1. The concept of classic dimensional reduction.

2. The "new" concept of dimensional reduction through en-type ligands.

3. Examples

1. Classic dimensional reduction.

"Organic chemists have at their disposal a vast library of reaction schemes for performing specific structural transformations. [...] In stark contrast, solid-state chemists have in their grasp only a few generalizable reaction schemes with which to modify the structure of an inorganic solid in a manner that might be predicted a priori."

Eric G. Tulsky and Jeffrey R. Long: Dimensional Reduction: A Practical Formalism for Manipulating Solid Structures. Chem. Mater. 2001, 13 (4), 1149–1166

Concept:

"Dimensional reduction is set forth as a general formalism describing how the metal-anion (M-X) framework of a parent compound, MX_x , is dismantled upon reaction with an ionic reagent A_aX to form a child compound $A_{na}MX_{x+n}$."

Benefits:

> Design prediction of inorganic compounds.

>Reduction of dimensionality while maintaining coordination and connectivity of the metal centres.

But:

>All examples provided by Tulsky and Long are purely inorganic frameworks.

What about Metal-Organic Coordination Polymers?

2. Dimensional reduction through entype ligands.

En-type ligands:

> Ethylenediamine (abbr. en) is a bidentate chelating ligand popular in coordination chemistry.

>Other ligands sharing the same bidentate coordination site are referred to as en-type ligands.

Concept:

>Addition of en-type ligands to coordination polymers of dicarboxylic acids leads to reduction of dimensionality by a degree of one.

The en-type ligands coordinate as chelate.

> En-type ligands can either be added during the framework synthesis, or as past synthetic treatment of the coordination polymer.

Benefits:

>Extension of the concept of dimensional reduction to include metal-organic compounds.

Reduction of dimensionality drastically increases solubility.

>Allows for better crystallisation.

But:

>Addition of blocking ligands changes the coordination of metal centres.

Concept has only been tested on a narrow field of compounds so far.

> Different Ligands have to be tested for each reaction to find the right one.

>Only 1D and 2D structures investigated so far.

3. Examples

[Cu(II)(asp)(AMPY)(H₂O)] x 0.6 H₂O

[Cu(II)(asp)(BIPY)(H₂O)]

3.2 Copper(II)tartrate

C. K. Prout, J. R. Carruthers, F. J. C. Rossotti, J. Chem. Soc. A 1971, 3336-3342.

 $[Cu_3(meso-tart)_3(TMEDA)_2] \times 2 H_2O$

Summary

Parent compound (dimensionality)		en-type ligand	Child compound (dimensionality)	
Copper aspartate	1D (chain)	ΑΜΡΥ	[Cu(II)(asp)(AMPY)(H ₂ O)] x 0.6 H ₂ O	0D (discrete)
Copper aspartate	1D (chain)	BIPY	[Cu(II)(asp)(BIPY)(H ₂ O)]	0D (discrete)
Copper D-tartrate	2D (layer)	TMEDA	$[Cu(D-tart)(TMEDA)]_n^1 \ge 2H_2O$	1D (chain)
Copper meso-tartrate	1D (chain)	TMEDA	$[Cu_3(meso-tart)_3(TMEDA)_2] \times 2 H_2O$	0D (trinuclear)
Copper dbta	1D (chain)	EDA	[Cu(dbta)(EDA)(H ₂ O) ₂] x 2 H ₂ O	0D (discrete)

Thank you for your attention!

CONTACT ME FOR ANY QUESTIONS.