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Abstract: As mathematical tools that can be commonly used for indexing analyses from different
types of experimental patterns, we have recently developed (i) rules on forbidden hkl’s that can be
used even when the space group and setting are unknown, (ii) algorithm for error-stable Bravais
lattice determination, (iii) generalization of the de Wolff figure of merit for powder diffraction (1D
data) to data in higher-dimensions such as Kikuchi patterns (2D data) by electron backscatter
diffraction (EBSD). In particular, (ii) could be used in a variety of situations, not just for indexing. It
is explained how (i) —(iii) are used in the mathematical framework of our indexing algorithms. The
developed software is now available on the web.

Powder auto-indexing: https://z-code.kek.jp/zrg/ (CONOGRAPH)
EBSD ab-initio indexing: https://osdn.net/projects/ebsd-conograph/

Keywords: Bravais lattice; ab-initio indexing; figure of merit

1. Introduction

Mathematical tools that can be commonly used in ab-initio indexing analyses are introduced
herein. They were originally invented for powder diffraction [1], and subsequently applied to
indexing of Kikuchi bands in electron backscatter diffraction (EBSD) patterns [2]. “Ab-initio” means
that the indexing is carried out without any prior information on the parameters and Bravais type of
the unit cell.

In the case of powder diffraction, the values of d-spacings (hence, lengths of reciprocal-lattice
vectors) are obtained from positions of diffraction peaks. In the EBSD case, the orientations of
reciprocal-lattice vectors are provided from the positions of Kikuchi bands. Our indexing algorithms
for them use a common mathematical framework shown in Figure 1. First, the parameters of the
primitive cell are determined, because (i) simple rules of systematic absence are available, if only
basis vectors of a primitive lattice are considered. Subsequently, (ii) Bravais-type (and centering)
determination is carried out. This process can be error-stable enough to deal with unit-cell parameters
containing large errors due to zero-point shifts (powder [3]) or projection-center shifts (EBSD [4]). We
also (iii) generalized the idea of the de Wolff figure of merit M« [5], which has been the most efficient
indicator in powder indexing. The generalized one presents similar properties for EBSD patterns [2].

In what follows, the mathematics used for (ii) is mainly discussed. Due to the limitation of the
space, (i), (iii) are only mentioned, referring to published papers. The author believes that these
theoretical results will be also useful in different analyses of crystallography.
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1. Obtain parameters of a unit cell from each combination of reflections.

X:’hs,, . X:hs : observed reflections:
I;- 15 -1\ parameters
obs obs obs obs L L * * ® 1 1 1 2 N
* (X£1 'xiz 'Xig 'XE4 ) = (13,05, + 205,21 + 15) = (!; S !5) of a zone

o (XPPS, - XEPSXEP) = (L + 3+ 3, 1 + 15,1 = 15,13 + 13,15 = 13, 15,13)
or (X225, X)) > (G + L+ B, G+ 5, -5+ 3,1 - 15,1) &

G- -l & -BY parameters of a
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orimitive cell
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Y

2. Error-stable Bravais-lattice determination.

Y

Primitive cell

3. Sort candidates for unit-cell parameters.

o X .. X observed reflections FOM value
i S ’ Compare mp (generalized de Wolff M)
l | » x,.. x} : calculated reflections 3

Sort solutions by the FOM

Figure 1. Common mathematical framework of our indexing algorithms

1.1. Notation

We summarize the notation and symbols used in the article. The inner product of the Euclidean
space R" is denoted by u-v, and the Euclidean norm % -u is denoted by | u |2. Any basis

()

ey U

v of an N-dimensional(N-D) lattice L is associated to a quadratic form:

2
f(xl,...,xN>:‘:clv1 + T, = x' 9%, (1)
T
where x = (x x ) is a vector, and 5 is the symmetric matrix with v, -v, in the

by

(i,)-entry. S is also the Gramian (or metric tensor [6]) of L. The stabilizer of S is defined as the

following subgroup of GL, (Z) (= the group of integral matrices with the determinant +1):

Stab(S) ={g € GL,(Z): ¢Sg" = S}. )

The Gramians S1, Sz belong to the same Bravais type, if Stab(Sl), Stab(SQ) are conjugate in
GL, (Z) (ie., there exists 0 € GL, (Z) such that (TStab(Sl)cf1 = Stab(S,)) [7].

On the linear space S y consisting of N-by-N symmetric matrices, an inner product is defined
by S eT := Trace(ST), whichmakes S, the metricspace (the distance between S and T equals
(S - T) . (S - T) ). The subset of SN consisting of all the positive definite symmetric matrices is
denoted by S, . The actionof GL, (Z) on S isgivenby S +— gSq" .

The following is an overview of the lattice-basis reduction theory that discusses methods to

provide the representatives for the orbits GL,(Z)\ S; . Namely, D C S, is the subset that
fulfills the following (i), (ii):
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o Sy= U Dl

9eCLy (7))

(i) Dlg,]NDlg,| =D forany g, = +g, € GL,(Z), where D[g|={gSg" : S € D}.

de
As the boundaries of D are prone to complications, overlapfs of the boundary
OD == D\ D" (D" : set of interior points of D) are frequently allowed. In such a case, D
should satisfies (i) and the following (ii)" and (iii):
(i) D"[g,]ND"[g,) =@ forany g, = +g, € GL (Z).
(i) D N Dlg] = D for only finitely many g € GL, (Z).
It is straightforward to see that any S in D" satisfies Stab (S’ ) = {£1}. Thus, all the S

with non-triclinic Bravais types belong to the boundary of D. The following are the definitions of

Venkov [8] and Delaunay reductions used in Section 3; for any fixed S 0 € S; , define D, by:
D, ={SeS;:5e5 < (9Sg")e S, for any g € GL,(Z)}. 3)

From the definition, DSO 9] = DSO s g € Stab(S;) holds. If S belongs to DSU’ S is

Venkov-reduced with regard to S, o- Inparticular, Sis Selling-reduced, if Sbelongsto D, , where AN

is the symmetric matrix with 2 in the diagonal entries and 1 in the other entries.

2 i=j

AGD=1 @

2. Determination of the primitive lattice

For some types of SA, forbidden reflections are not exceptional, but occur considerably high rate.
The rules of SA stated in International Tables depend on the space group and setting of atomic
positions. Simpler rules of SA are required for developing algorithms that generally work.

In order to obtain such simple rules, only basis vectors of the primitive lattice are considered

herein. I is the reciprocal lattice of the crystal lattice L. {ll* ) l; } is a primitive set, if it is a subset of

X * % ok *
some basis [ ,1,,l, of L .

Theorem 1. [Theorem 2, [9]] Regardless of the type of SA, there are infinitely many primitive sets {ll* , l; }
of L such that none of 1,11

1772771

* ok ok

+ 2l2*,2l1* + l; corresponds to an extinct reflection due to the SA.

Furthermore, there exist infinitely many 2D sublattices L; of L such that L; is expanded by such ll* , l; .

Theorem1 is not true, if [ ,[,,[ +2I,,2l +1, are replaced eg, by [}, +1,[ —1,
(vectors in Ito’s formula[10]: 2[[1 +1I, ] =l +1,| +|, — 1| ) The theorem assures that some

* ok ok

combinations of observed reflections correspond to [ ,[,,l, +21,,2l +1,,forsome [ ,I, contained

in a basis of L*. In the powder case, the inner product l1* . l; is computed by
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l

el s AT

Similarly, in the EBSD case, the direction A / ‘l* ‘ of the reciprocal-lattice vector [ are obtained from

2
—|rf -4 — 4l

1

—|l

2

I +20

21 +1,

can be

lQ

[ +20

the coordinates of Kikuchi bands. Therefore, the vector-length ratio ‘ll* ‘ :

calculated from the directions of ll* / ,l; / , <l1* + 2[2* ) /

(zj/ 2 |~ +2x)/

In both of Eq.(5), (6), the lengths (or directions) of l1* oAyl

ll

12

[+ 20

by solving the linear equation.

*

l

1

l?

[ +20

)x:O (6)

* 0%

+ 2[2* are sufficient to obtain the

matrix (or the ratio of its components) in Eq.(7). The remaining length (or direction) of 2[1* + l; can

be used to remove unlikely solutions quickly.

ll 'll ll 'l2 @
ll '12 lz 'l2

Theorem 2 is a 3D version of Theorem 1.
Theorem 2. [Theorem 4 in [9]] Regardless of the type of SA, there are infinitely many bases <l1* , l; ; l; ) of
L such that the following hold:
(a) the reflections of :I:ll* + l; + l; are not forbidden.

(b) For both © = 2, 3, (i) none of the reflections of ml: +(m—1) (—ll* + lj) are forbidden for any

integer m, or (ii) none of the reflections of ml: +(m—1) (ll* - l;) are forbidden for any integer
m>0.

As a result, in CONOGRAPH, I/ 1;, I &1, Il +1, +1; and either of I or {1/} are

assigned to various combinations of observed reflections. See Figure 5 of [2] for the EBSD case.

3. Bravais-lattice determination from unit-cell parameters containing large observation errors

3.1. theoretical Background

After the parameters of the primitive cell are obtained in the indexing process, it is necessary to
convert them into parameters of the conventional cell. For a Gramian matrix S " extracted from

observed data, how can one estimate the Bravais type of the unknown true value S of S 2 In
practice, the error can be observational errors or rounding errors of floating-point numbers [11].

If S isexact (e, S =S, the symmetry group of n-by-n S°”* can be determined e.g., by
the method of [12] (the computation time is rapidly augmented as 1 increases). However, if S S

no matter how close S” isto 5, g € Stab(S*") isnot generally true forany 1= g € Stab(g ).

A

As a result, it is only possible to estimate likely ones as Stab(.S) . It is common in libraries developed

by mathematicians (e.g., Magma [13]) that the parameters of a lattice cannot be entered in floating-type
numbers. For this reason, error-stable methods have been investigated in mathematical crystallography.
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This determination can be done by step 1 & 2 in Table 1 by using a finite set Ho with the following
property, where D is a domain that fulfills (i), (ii)’, (iii)’ in Section 1.1.

Heif $™ € D, then S €U _, Dlg].

T
Namely, Ho is a finite set containing all g € GL, (Z) such that ¢ 'S ( gil> is nearly

reduced (i.e,, close to D) for some reduced S (ie, S° thatbelongsto D).

Table 1. Outline of error-stable Bravais lattice determination methods!

Prepared sets 1. Foradomain D that fulfills (i), (i), (iii)’ in Section 1.1, and its topological

in codes closure D, let G be the finite set consisting of all g € GL, (Z) with

DN Dlg]= 2. Foreach finite group G, (k = 1,...,m) contained in G,
prepare the set of linear subspace Lk consisting of all S € Sn with

Stab(S) D G, . (Namely, L,,...,L are lattice characters [6].)

~

2. Finite set Ho consisting of operations g for which D[g] may contain S when

S isin D.
Input ,
para nP; oters  Cramian S " (assume S*” € D by exchanging the basis)
Step 1 ) . T —

P Forany g € H, if S;b's =g '9" (g_l) is close to the domain D within the
errorof S°” (i.e., nearly reduced), do the following; for each L (k=1,...,m),
calculate S € I, closeto S * ¢.g., by projecting S, " on Lk If S, " and S are close
to each other within the error, store g, S in the array for the Bravais type of L, .

Step 2 Output the stored g, S after removing duplicates.

1 The same calculation can be done, even if D is replaced by a union of finitely many D[ g] such as the

Venkov reduced domain 'DS . The only difference is that Ly may not be in the boundary of D
0

If D is the Niggli-reduced domain[Chap.9.2.2, 6], Go in Table 1 consists of 168 elements. The
number m of lattice characters Lk is 42, after two triclinic cases are excluded [Table 9.2.5.1, 6]. Ho must
contain Go, because all the non-triclinic S belong to the boundary of the Niggli-reduced domain. Hence,
the computation time of the method of Table 1 is roughly estimated as | Hol xm =168x42 = 7056. This is
a little time consuming, if it is applied to multiple primitive cells generated in the indexing process.

The methods of Andrews & Bernstein [14,15] are basically same as this Niggli-reduced case,
although it is not assured that their heuristics can always generate all the necessary operations (in their
method, 25 operations in [16] are used to generate the elements of Ho).

Use of the Delaunay reduced domain was proposed Burzlaff & Zimmermann [17,18]. This reduces
the number of lattice characters from 44 to 30. However, Ho is set to { 1 } in their method, so it can
basically handle only the exact case.

Thus, the following are the problems, in order to develop a faster and more reliable Bravais-lattice
determination method.

Question 1: Which reduction method minimizes the computation time for Table 1?
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Question 2: Under which assumption on the error size of S " s it possible to output all the S with

5 &~ S and Stab(S) = Stab($)?

Our idea for Question 1 was to use the following Venkov-reduced domain D, as D in Table 1.
0

So=I3(3x3 identity matrix): if D is the Niggli-reduced domain,

p,= U D] ®)

geStab(I3)

So=Asin Eq.(4):if D is the Delaunay-reduced domain,

b, = U D

geStab(4, )

T

g

)

By the choice of So, DS can include non-triclinic Lk in the interior distant from its boundary 82)5 .
( )

) (

Insuch a case, if S isin Lk and Venkov-reduced with regard to S 07 S =~ S is also in the interior of

DS . Asaresult, it is not necessary to consider the nearly-reduced. Homay be set to { 1 } if the Venkov
0

reduction is used.
Based on this idea, the author proved that error-stable determination is possible, under the

following condition C on the error size of S°”*[19] (This is an answer to Question 2):

C: for any 3-by-3 symmetric matrix Tand 0= v € Z",if S e TZVS’VT/2, S5 T >0 holds.

Namely, C excludes the case: v’ Sv/2 < SeT ~ S eT <0 (If Lis the crystal lattice with

the Gramian S, the half of the squared-length of any non-zero vector in L is observed as a positive

value). Hence, C only assumes that the error of S is not extraordinary large. Under this condition,
the following is proved:

Theorem 3. [Theorem 1--4 in [19]] Foragiven S™* € D, , assume that S belongs to the Bravais
0

A

type B, in addition to C. In this case, S belongs to the Vi, a union of finitely many linear subspaces
in Table 2.

Table 2. B, Sy, Vg in Theorem 1.

The number of linear subspaces VB

Bravais type B S 0 Ho={1}?
(the number when Ho ={ 1 } holds)
Primitive I, Yes 3(3) - Table3in[19]
monoclinic
Face-centered = 4 Yes 3(3) - Table4in[19]
orthorhombic 3
Body-centered .
+-+ Tabl 1
orthorhombic? A3 Yes able 5 in [19]
Rhombohedral ~ 4,  conditionally 64(16) - Table 6in[19]
yes?
Base-cenfelfed A3 conditionally 69 (21) - Table8in [19]
monoclinic yes?

! As for the face-centered case, our method simply uses the fact that S obs has the face-centered symmetry if

and only if the inverse of S ** has the body-centered symmetry.
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2 This is yes, if the software user only needs the S closest to S obs among those with the Bravais type B.

There are only 5 Bravais types in Table 2, because it is straightforward to classify unit cells after
the centering determination (i.e., conventional unit cells) into higher-symmetric Bravais types.
In Table 2, if Ho={ 1}, the number of operations required for the error-stable determination is same

as the exact case. Therefore, contrary to our intuition, it is possible to output S with S % ~ S and

Stab(S) = Stab(g ) very generally, without increasing the computation time at all. However, the

error of S°” affects the distance between the output S and its true value S.

3.1. Computation results

The implemented program is used in our indexing software [1,2]. It was also used to build a
database of quadratic forms [20]. In [2], indexing analysis was carried out for EBSD patterns with
projection-centers shifted as follows (z: the camera length).

Az Ay Az
—,—y,— = 0,40.005,4£0.01,40.02 (10)
z z z
The software succeeded in indexing of orthorhombic—cubic cells in most of the cases. Among
them, there were only a few failures due to errors in Bravais-lattice determination (see Tables 4,5 and
Figure 9 in [2] for more details).

5. Discussion

The theorems presented in Sections 2, 3 hold true for any symmetry types the crystal structures
can have. Our error-stable Bravais-type determination is probably the first method where the result
is mathematically guaranteed, even for parameters with large error. As I explained, the number of
operations | Hol xm =168x42 = 7056 cannot be decreased as long as the Niggli reduction is used, although
it can be reduced from 7056 to 154 (58, conditionally) by using the Venkov reduction for Is and As.
However, there might be other reduction methods (or So) that provide a faster method. No studies have
been reported for lattices of dimensions more than 3.

Prior to such theoretical results, software developers of indexing analysis had to develop case-
by-case algorithms or heuristics to deal with the symmetries by themselves. As ab-initio indexing
software for powder diffraction patterns, ITO [21,22], TREOR [23], and DICVOL [24] are well known.
EBSD ab-initio indexing have been also studied in [25--27], although more accurate methods for band
extraction and projection center identification are also needed for this indexing analysis.

From a theoretical point of view, the two indexing analyses have much in common. This
suggests that updating the mathematical crystallography is effective to obtain reliable and efficient
analytical methods in short time.
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