Crystals 2020

The 2nd International Online Conference on Crystals 10-20 NOVEMBER 2020 | ONLINE

First-Principle Study of Electronic Structure and Magnetic Properties of Tb₂FeCrO₆

Sarita Lawaju^{1,2}, Shalika Ram Bhandari^{1,2}, Santosh K. C.³, and Madhav Prasad Ghimire^{1,2*}

¹Central Department of Physics, Tribhuvan University, Kirtipur, 44613, Kathmandu, Nepal

²Condensed Matter Physics Research Center, Butwal-11, Rupandehi, Nepal ³San José State University, San Jose, California, United States

* madhav.ghimire@cdp.tu.edu.np

Outline

- Abstract
- Introduction and Motivation
- Crystal Structure
- Computational Details
- Results and Discussions
- Conclusions

Abstract

Electronic and magnetic properties of Tb_2FeCrO_6 (TFCO) is investigated using density functional theory (DFT). TFCO shows the insulating property with the band gap of 0.048 eV and 2.372 eV with generalized gradient approximation (GGA) and GGA + U respectively. The antiferromagnetic configuration, AFM1 $[Fe_1Fe_2Cr_1Cr_2-\uparrow\downarrow\uparrow\downarrow]$ is found to be the ground state. Further, exchange coupling constants $J_{Cr-Cr}(-0.99 \text{ meV})$, J_{Fe-Fe} (-5.68 meV), and J_{Cr-Fe} (-1.36 meV) are calculated to get depth knowledge on magnetic realm of TFCO.

Keywords: Density functional theory; generalized gradient approximation; antiferromagnetic; magnetic exchange interaction

Introduction and Motivation

- Double perovskite (DP) is the compound having general formula A₂BB'O₆, where A – rare earth element; B,B' transition elements.
- DPs containing Fe and Cr shows interesting properties like multiferroicity and can have varieties of applications.¹
- Experimentally, TFCO showed re-entrant spin reorientation and griffith's phase transition.²
- > TFCO-Pbnm structure has G-type antiferromagnetic ground state and shows insulating property.²
- $^{\scriptscriptstyle >}$ Spin-Heisenberg Hamiltonian: $\hat{H}_{\rm spin} =$ $\sum J_{ij} \hat{S}_i \hat{S}_j$

¹P. Baettig, and N. A. Spaldin, Appl. Phys. Lett., **86**, 012505, (2015) ²B. Mali, H. S. Nair, *et. al.*, Phys. Rev. B, **102**, 014418, (2020)

Crystal Structure

Figure: Crystal structure of Tb₂FeCrO₆ (Pnma)

- Tb₂FeCrO₆ space group (62 Pnma), orthorhombic
- Lattice parameters: a = 5.53913 Å, b = 7.59173 Å, a = 5.21242 Å and
 - c = 5.31242 Å and

$$\alpha = \beta = \gamma = 90^{\circ}$$

Charge state: Tb (4f⁸) → +3, Fe (3d⁵) → +3, Cr (3d³) → +3

Neel's temperature (experimental):

>
$$S_{Fe} = \frac{5}{2}$$
, $S_{Cr} = \frac{3}{2}$

Computational Details

- > Used density functional theory (DFT) using FP-LAPW + lo method implemented in WIEN2k code.³
- R_{MT} values for Tb, Fe, Cr and O are 2.35, 2.0, 1.96 and 1.72 Bohr respectively.
- Implemented generalized gradient approximation (GGA) and hubbard potential (+U).
- > On-site potential values used are: $U_{Tb} = 6 \text{ eV}$, $U_{Fe} = 5 \text{ eV}$, and $U_{Cr} = 3 \text{ eV}$.
- Self-convergence criteria: energy convergence 10⁻⁵ Ry, charge convergence – 10⁻⁴ e.
- 6 X 6 X 6 k mesh over irreducible Brillouin Zone (BZ).

³P. Blaha *et. a*l., WIEN2k, 2001.

Figure: Ground state spin configuration of TFCO-Pnma

- Optimized position of 3d-transition elements is in order Fe₁Fe₂Cr₁Cr₂.
- > Up/down spins of magnetic ions Fe_1 , Fe_2 , Cr_1 , Cr_2 ordering are: $FM-\uparrow\uparrow\uparrow\uparrow\uparrow$, $AFM1\uparrow\downarrow\uparrow\downarrow\downarrow$, $AFM2-\uparrow\downarrow\downarrow\uparrow\uparrow$, $FIM1\uparrow\uparrow\downarrow\downarrow\downarrow$, $FIM2-\uparrow\downarrow\downarrow\downarrow\downarrow$
- > Spin ground state configuration AFM1- $\uparrow \downarrow \uparrow \downarrow (G-Type AFM)$.
- > Magnetic moments: Fe(GGA) = $\pm 3.67 \ \mu_B$, Cr(GGA) = $\pm 2.36 \ \mu_B$ Fe(GGA+U) = $\pm 4.12 \ \mu_B$, Cr(GGA+U) = $\pm 2.57 \ \mu_B$
- Present of band gap of 0.048 (2.372) eV within GGA (GGA + U).

Density of States (DOS)

Total DOS plot within GGA

Total DOS plot within GGA+U

Figure: Total DOS plots of Tb_2FeCrO_6 within GGA (left) and GGA + U (right)

- Gap has increased after applying on-site potential (U), pushing away localized orbitals.
- Compound shows perfect anti-ferromagnetism after applying +U

Figure: Partial DOS (left) and band structure (right) within GGA + U

Crystals

2020

- Band gap is increased from 0.048 eV (GGA) to 2.372 eV (GGA+U).
- Gap is contributed by Cr-3d (valence region) and Fe-3d (conduction region).

Figure: J – path chosen for TBCO

- > $J_{Cr-Cr} = -0.99$ meV: Anti-ferromagnetic order.
- J_{Fe-Fe} = -5.68 meV: Anti-ferromagnetic order.
- > $J_{Cr-Fe} = -1.36$ meV: Anti-ferromagnetic order.
- > The interaction between Fe atoms is stronger of all.
- Neel's temperature was theoretically calculated using formula:

$$T_{N} = \frac{2S_{Fe}S_{Cr}}{3K_{B}}(4J_{1} + 4J_{2} + 2J_{3})$$

> T_N (calculated) = 853.69 K

Conclusions

- > G Type AFM1 $\downarrow \uparrow \downarrow \uparrow \downarrow$ [Fe₁Fe₂Cr₁Cr₂] is the spin ground state.
- Compound is an insulator with a band gap of 0.048 (2.372) eV within GGA (GGA+U).
- Gap is contributed by Cr-3d and Fe-3d states
- The exchange interactions between all transition elements are in antiferromagnetic order.
- Insulating behavior of compound shows possibilities of Multiferroicity in it and hence potential uses in spintronic devices, photo-voltaic devices, memory states, etc.

Acknowledgments

University Grant Commission Nepal Condensed Matter Physics Research Center Butwal, Nepal

