The effect of antioxidants added to preservation solution on the protection of kidneys before transplantation

Aneta Ostróżka-Cieślik, Barbara Dolińska <u>Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec,</u> Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland

• Background: The maximum storage time for the kidneys prior to transplantation using the static cold storage method is 30 hours. During this period, damage to the renal tubules may occur as a consequence of cold ischemia and reperfusion. In the cells, biochemical changes and

microcirculation disorders are observed, which can lead to delay graft function. The purpose of the organ perfusion and preservation solutions is to minimize these processes. The development of a fluid composition that would ensure high protection of grafts during ischemia-reperfusion is the current direction of research and a challenge. The aim of the analysis was to evaluate the effectiveness of antioxidants as components of preservation solution in kidney protection based on a literature review.

• Method: Two independent analysts searched the medical databases of Medline/PubMed, Embase, and Cochrane Library between October 5 and October 10, 2020. The following keywords were used: transplantation, kidney, cold storage, solution preservation, ischemia-reperfusion injury, additives, antioxidants, trace metals, bioflavonoids. There was no time limit for publication date.

Strategies based on mounications of preservation solution	Strategies	ies based or	n modifications	of preserva	tion so	lutions
---	------------	--------------	-----------------	-------------	---------	---------

Composition of preservation solutions

Author,	Antioxidant	Species	Preservation	Outcome measures,	Antioxidant	Effects of antioxidant	Component	Blood	UW	HTK	Biolasol	Euro-Collins
year of publication			solution	(intervention, I/control, C)	dose		IC/EX	EX	IC	EX	EX	IC
			modification				Electrolytes (mmol/L)					
			/ cold ischemia				K*	5	125	10	10	115
Ostróżka-Cieślik et al.	Selenium	Pig	Biolasol	I: Biolasol + Se4+and PRL	Se: 1 µg/L	Decreased level of ALT, AST,	Na ⁺	140	30	15	105	10
2020 [1]		-	2h, 48h,	C1: Biolasol	PRL: 0.1 ug/L	protein, urea	Ca ²⁺	2.5	-	0.015	0.5	-
			4°C: SCS		10	Se ⁴⁺ and PRL affects the	Mg ²⁺	0.9-1.2	5	4	5	-
			,			integrity of mitochondrial and	Cŀ	103	20	32	10.5	15
						cvtoplasmic membranes	SO4 ²⁻	0.5	5	-	-	-
Treśka et al.	Selenium	Piolets	нтк	I: HTK + Se	200 µg	Decreased level of MDA	Colloids (g/L)					
2003 [2]		1 151013	24h: 4°C: SCS	CI.HTK	200 μg	Reduced the production of FOR	HES	-	50	-	-	-
2003 [2]			241, 4 0, 505	CLINK		Higher levels of AOC	Dextran 70	-	-	-	0.7	-
Troéles et al	Salamium	Dielata	HTV	I. HTV + So	200.00	Degraded level of MDA	Albumine	42	-	-	-	-
2002 [2]	Selenuum	rigiets	241-490-909	C1. UTV	200 µg	Pedreased lever of MDA	Globuline ROC	24	-	-	-	-
2005 [5]			24n, 4 C, 3C3	CLIIIK		Higher levels of AOC	Allopurinol		1			
						Degree evels of AOC	Glutathione		3	-	-	_
C: 1 1	7 14 0	NIDIC COL. II	T 1747	LUM Z NAC	0.2.20 . M	Decreased memiensity of IKS	Mannitol	_	ž	30	_	_
Singh et al.	ZNNAC	NKK-52E Cells		I: UW + ZNNAC	0.5-50 mM	Decreased DNA tragmentation	Tryptophan	_	_	2	-	_
2013 [4]			24h; 0°C	CI:UW	max. effect: 1–10	Decreased the amount of active	Buffers (mmol/L)			_		
					mM	caspase-3	Histidine	-	-	198	-	-
						Decreased the expression and	HPO42-/H2PO4-	1.12-1.45	25	-	-	58
						nuclear import of EndoG	HCO3 ⁻	27	-	-	5	10
Ahlenstiel et al.	Luteolin	LLC-PK1 cells	UW	I:UW+luteolin	12.5-50 µM	Decreased level of LDH	Impermeants (mmol/L)					
2006 [5]	Quercetin		20h; 4°C	I: UW+quercetin		Reduced of lipid peroxidation	Lactobionate	-	100	-	-	-
			EC	C1:UW		Protection of renal proximal	Raffinose	-	30	-	-	-
			20h; 4°C	I: EC+luteolin	>50 µM	tubular	Citrate	-	-	-	30	-
				I:EC +quercetin			Glucose	7	-	-	167	195
				C1:EC			Additives (mmol/L)		_			
Ostróżka-Cieślik et al.	Vitamin C	Pig	Biolasol	I: Biolasol + Vit.C	0.088g/l	Decreased level of ALT, AST,	Adenosine	-	5	-	-	-
2018 [6]			2h, 48h, 4°C; SCS	C1: Biolasol		LDH	Ketoglutarate	-	-	1	-	-
						Reduced oxidative stress	EDIA	-	-	-	5	-
McAnulty et al.	Vitamin C	Rabbit kidney	UW	I: UW+Vit. C	1 mM	Reduced oxidative stress	rumarate	- 7.4	-	- 70	2 4	- 7.2
1997 [7]		cortex slices	18h; 5°C	C1: UW			Viscosity (cP)	1.4	7.4 5.01	1.4	2.90	7.5 N/A
							COR (mm Hz)	29	21.0	1.00	2.70 NI/A	
Demirbaş et al.	Vitamin E	Dog	EC	I: EC+Vit. E	30 mM/L	Reduced of lipid peroxidation	COP (mm Hg)	20	(5%C)	(5°C)	IN/A	IN/A
1993 [8]		_	24h; 4°C	C1: EC			Osmolality	308	320	310	330	406
							(mOsm/kg H ₂ O)	000	020	010	000	200

Abbreviations: ALT: alanine transaminase; AST: aspartate transaminase; PRL: prolactin; MDA: Malondialdehyde; HTK: histidine-tryptophan-ketoglutarate solution, FOR: free oxygen radicals (oxygen superoxide, hydroxyl radical, hydrogen peroxide, and nitric oxide); AOC, anti-oxidation capacity of plasma; IRS, ischemia-reperfusion syndrome; LLC-PK1 cells, a proximal tubular epithelial cell line of pig origin; UW: University of Wisconsin; EC, Euro-Collins; LDH, lactate dehydrogenase; ZnNAC, Zinc-N-acetylcysteine; NRK-52E cells, normal rat tubular epithelial NRK-52E cells; EndoG, endonuclease G

IC - intracellular, EX - extracellular, HES - hydroxyethyl starch,

COP – colloid osmotic pressure, EDTA – ethylenediaminetetraacetic acid

- Results: The analysis of the literature showed a significant correlation between the use of the preservation solution that composition was modified by the addition of an antioxidant (vitamin C/E, selenium, zinc, bioflavonoids) and their effectiveness in kidney protection. It is suggested that antioxidants counteract free radical damage. They protect nephrons against oxidative stress and protect cell membranes against peroxidative damage.
- **Conclusion:** The antioxidants added to the preservation solution counteract damage to the nephrons that result from the excessive generation of oxygen free radicals during ischemia-reperfusion.

- 1. Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Therapeutic Potential of Selenium as a Component of Preservation Solutions for Kidney Transplantation. Molecules 2020, 25, 3592.
- 2. Třeška, V.; Kuntscher, V.; Molacek, J.; Kobr, J.; Racek, J.; Trefil, L. Can the ischemia-reperfusion syndrome in transplanted kidneys procured from non-heart-beating donors be influenced by adding selenium into the reperfusion solution? An experimental study. Transplant. Proc. 2003, 35, 1584-1586.
- 3. Třeška, V.; Kuntscher, V.; Molacek, J.; Kobr, J.; Racek, J.; Trefil, L. Can ischemia-reperfusion syndrome in transplanted kidneys procured from non-heart-beating donors be influenced by adding selenium into the reperfusion solution? An experimental study. Transplant. Proc. 2003, 35, 3125-3127.
- 4. Singh, M.; Odeniyi, D.T.; Apostolov, E.O.; Savenka, A.; Fite, T.; Wangila, G.W.; Walker, R.B.; Basnakian, A.G. Protective effect of zinc-N-acetylcysteine on the rat kidney during cold storage. American journal of physiology. Renal Physiol. 2013, 305(7), F1022–F1030.
- 5. Ahlenstiel, T.; Burkhardt, G.; Köhler, H.; Kuhlmann, M.K. Improved cold preservation of kidney tubular cells by mensa of adding bioflavonoids to organ preservation solutions. Transplantation. 2006, 81(2), 231-239.
- 6. Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. The effect of modified biolasol solution on the efficacy of storing isolated porcine kidneys. *BioMed Res. Int.* 2018, 2018, 1–7.
- 7. McAnulty, J.F.; Huang, X.Q. The efficacy of antioxidants administered during low temperature storage of warm ischemic kidney tissue slices. Cryobiology. 1997, 34, 406-415.
- 8. Demirbas, A.; Bozoklu, S.; Ozdemir, A.; Bilgin, N.; Haberal, M. Effect of alpha-tocopherol on the prevention of reperfusion injury caused by free oxygen radicals in the canine kidney autotransplantation model. Transplant Proc. 1993, 25(3), 2274.

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

