

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

Design, synthesis, and biological evaluation of 1,2,3-triazolelinked triazino[5,6-b]indole-benzene sulfonamide conjugates as potent carbonic anhydrase I, II, IX, and XIII inhibitors

Ch.Krishnakartheek ^{1,*}, Dr. Mohammud Ariuddin ², and Prof. Claudiu T. Supuran ²

¹ Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037;

 ² Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schi 6, Sesto Fiorentino, 50019 Florence, Italy;
* Corresponding author: arifabib@gmail.com, claudiu.supuran@unifi.it

1

Design, synthesis, and biological evaluation of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide conjugates as potent carbonic anhydrase I, II, IX, and XIII inhibitors

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Abstract:

A series of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids (6a–6o) was synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity against the human (h) isoforms hCA I, II, XIII (cytosolic isoforms), and hCA IX (transmembrane tumor-associated isoform) The results revealed that the compounds 6a–6o exhibited Ki values in the low to medium nanomolar range against hCA II and hCA IX (Kis ranging from 7.7nM to 41.3 nM) and higher Ki values against hCA I and hCA XIII. Compound 6i showed potent inhibition of hCA II (Ki = 7.7 nM), being more effective compared to the standard inhibitor acetazolamide (AAZ) (Ki = 12.1 nM). Compounds, 6b and 6d showed moderate activity against hCA XIII (Ki = 69.8 and 65.8 nM). Hence, compound 6i could be consider as potential lead candidate for the design of potent and selective hCA II inhibitors.

Keywords: 1,2,3-triazole; triazino[5,6-b]indole-benzene sulfonamide; carbonic anhydrase inhibitors

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDF

Introduction

• Respiration is one of the key physiological processes across all phyla, ranging from prokaryotes to eukaryotes.

• Several cellular metabolic reactions utilize carbon dioxide (CO_2) as their substrate and produce its hydrated form, bicarbonate (HCO_3^{-}), as the product.

• This bicarbonate plays a pivotal role physiologically by acting as a substrate for various carboxylating enzymes, which are involved in the biosynthesis of fatty acids, amino acids and nucleotides.

• The interconversion between CO₂ and HCO₃⁻ can be shown by the following two-step reaction:-

$$E-M^{2+}-OH- + CO_{2} \longrightarrow E-M^{2+}-HCO_{3}^{-} \longrightarrow E-M^{2+}-H_{2}O + HCO_{3}^{-}$$
(1)
$$E-M^{2+}-H_{2}O + B \longrightarrow E-M^{2+}-OH- + BH^{+}$$
(2)
where $M^{2+} = Zn(U) + Cd(U) + En(U)$

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MD

pharmaceuticals

- The uncatalyzed reaction is slow at physiological pH.
- Hence in order to accelerate this reaction, a class of enzymes called carbonic anhydrases come into picture.
- Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiquitous metalloenzymes, which facilitate the above said reaction across all phyla.
- Till date, seven genetically distinct families of CAs have evolved across all phyla, ranging from bacteria and archaea to eukarya.
- These seven families are the α -, β -, γ -, δ -, ζ -, η and θ .
- These carbonic anhydrases cater a role in various biosynthetic processes and pH regulation.

α- CA	Vertebrates, Algae, Gram – ve bacteria
β- CA	Gram +ve bacteria, monocots & dicots
γ- CA	Archaea, Cyanobacteria
δ- CA	Marine diatoms
ζ- CA	Marine diatoms
η- CA	Protozoa
θ- CA	Phaeodactylum tricornutum

sponsored: MD

harmaceuticals

Humans and Carbonic anhydrases

- Humans primarily contain the α class of carbonic anhydrases.
- Sixteen isozymes of this class have been identified in total and they differ in a variety of attributes like molecular features, oligomeric arrangement, cellular localization, distribution in organs and tissues, expression levels, kinetic properties and response to different inhibitor classes.
- Among all isozymes, CA I, CA II, CA III, CA VII, CA VIII, CA X, CA XI and CA XIII are cytosolic, CA IV, CA IX, CA XII and CA XIV are membrane-bound, CA VA and VB are mitochondrial and CA VI is secreted in saliva and mammary glands.
- CAs VIII, X and XI are devoid of any enzymatic activity and are designated as CA-related proteins (CARPs).

sponsored: MDF

Enzyme	Organ/tissue distribution	Disease in which enzyme is involved	
CAI	Erythrocytes, gastrointestinal tract, eye	Retinal/cerebral edema	
CA II	Erythrocytes, eye, gastrointestinal tract,	Glaucoma, edema, epilepsy, altitude	
	bone osteoclasts, kidney, lung, testis, brain	sickness	
CA III	Skeletal muscle, adipocytes Skeletal muscle, adipocytes	Oxidative stress	
CA IV	Kidney, lung, pancreas, brain capillaries, colon, heart muscle, eye	Glaucoma, retinitis pigmentosa, stroke	
CA VA	Liver	Obesity	
CA VB	Heart and skeletal muscle, pancreas, kidney, spinal cord, gastrointestinal Tract	Obesity	
CA VI	Salivary and mammary glands	Cariogenesis	
CA VII	Central nervous system	Epilepsy Oxidative stress	
CA IX	Tumors, gastrointestinal mucosa	Cancer	
CA XII	Renal, intestinal, reproductive epithelia,	Cancer	
	eye, tumors	Glaucoma	
CA XIII	Kidney, brain, lung, gut, reproductive tract	Sterility	
CA XIV	Brain, liver, eye, skeletal muscle	Epilepsy, retinopathies	

Classical carbonic anhydrase inhibitors

 Benzene sulphonamide based compounds are most potent and most utilized among carbonic anhydrase inhibitor classes

- These compounds bind to zinc ion via sulphonamide as Zinc binding group (ZBG) in deprotonated form displacing zinc bound water/hydroxide molecule.
- For all catalytic isoforms, three histidine residues coordinating the zinc, **Thr199 and Glu106** are conserved. Both T199 and E106 play a crucial role in catalysis
- Small molecular weight carbonic anhydrase inhibitors utilize ZBG tend to bind deep inside the active site cavity make extensive interactions with amino acid residues thus contributing indiscriminate inhibition profiles. Therefore alternative approaches have been developed for better isoform specific carbonic anhydrase inhibitors

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

"Tail approach" in designing isoform specific carbonic anhydrase inhibitors

- It is one of the most successful approach in designing isoform specific CAIs. In this approach a chemical moiety known as tail appended on to a organic scaffold (usually aromatic/Heterocyclic) of a ZBG
- This tail elongates the inhibitor allowing it to make extensive interactions with amino acids towards outside of the active site, mainly at hydrophobic and hydrophilic halves.

Expert Opin. Drug Discov. (2013) 8(7)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDF

Bioorganic & Medicinal Chemistry 22 (2014) 334-340.

pharmaceuticals

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020 In the present work, new series of compounds were designed based on Tail approach via the fusion of **indole scaffold** with **1,2,4-triazine** which were reported as potent scaffolds for carbonic anhydrase activity.

The present design of compounds based on two strategies, The first one was fusion of two potent Scaffolds i.e. Indole & 1,2,4-triazine in order to develop a flexible tail with better interactions in the Enzymatic active site and the second one was to incorporate different N-alkyl substituents in the Indole tail in systematic fashion to enhance hydrophobic interactions.

sponsored:

pharmaceuticals

Results and Discussion

The current Design of experiment (DOE) based on molecular hybridization approach

We synthesized molecular hybrids of bulky triazno[5,6-b] indole, used as a tail, conjugated to Benzene sulfonamide through a flexible 1,2,3-triazole as al inker.

Scheme:1 Synthesis of target sulfonamides 6a-o; Reagents and conditions: (i) K_2CO_3 , KI(0.05 mole%), DMF, reflux, 4-6h, Yield: 72-75%, (ii) Thiosemicarbazide, Cs_2CO_3 , 1,4-dioxane, reflux, Overnight, Yield: 68-70% (iii) Propargylbromide, K_2CO_3 , DMF, rt, Overnight, Yield 86-90% (iv) CuSO₄.5H₂O, Sodiumascorbate, tBuOH:H₂O(1:1), 60°C,Overnight, Yield: 65-70%.

sponsored:

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Carbonic anhydrase Inhibition

The newly synthesized 1,2,3-triazole linked triazino[5,6-b]indole-benzene sulfonamide hybrids (**6a–60**) were evaluated for their carbonic anhydrase inhibitory activity against a panel of carbonic anhydrases, i.e., hCA I, hCA II, hCA IX, and hCA XIII, by the stopped-flow CO₂ hydrase assay method.

Highly purified CA isoforms were employed, for which the kinetic parameters for the physiologic reaction (CO₂ hydration) were measured, monitoring the color change produced by the formation of H⁺ ions (and bicarbonate).

For all the pure enzymes, the kinetic parameters (k_{cat} and k_{cat}/K_{M}) are measured and these values are given in the below table. These activities were highly inhibited by the clinically used sulfonamide inhibitor acetazolamide (AAZ), as shown in table below. It was observe that all these enzymes are highly efficient catalysts with $k_{cat}/K_{M} > 10^7 M^{-1}x s^{-1}$.

Organisms	CA Class	Acronym	K _{cat} (s ⁻¹)	$\begin{array}{c} k_{cat}\!/K_M \\ (M^{-1}\!\times s^{-1}) \end{array}$	K _I (Acetazolamide) (nM)
Homo sapiens	α	hCA I	2.0×10^{5}	5.0×10^{7}	250
	α	hCA II	1.4×10^{6}	1.5×10^{8}	12.1
	α	hCA IX ^a	3.8×10^{5}	5.5×10^{7}	25.8
da	α	hCA_XIII	1.5×10^5	1.1×10^7	17.0

^a Catalytic domain.

Inhibition of hCA isoforms I, II, IX & XIII by the compounds 6a to 6o

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

pharmaceuticals

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

sponsored: MDPI

sponsored: MDPI

pharmaceuticals

Structural activity relationships

• The cytosolic hCA II isoform was strongly inhibited by all the synthesized compounds **6a–o**, in a low to medium nanomolar range ($K_i s = 7.7 \text{ nM}$ to 0.2527 μ M).

The best activity against hCA II was shown by compound 6i (K_i = 7.7 nM), possessing a fluoro group attached at the 5th position of the indole ring and an isopropyl group anchored to the nitrogen of indole. It was almost twofold more active than the standard AAZ (K_i = 12.1 nM).

Compounds 6d–6g, were found to have potent activity at the nanomolar concentration against hCA II, with K_i ranging from 20.9 to 63.9 nM.

Compounds 6k–6o, containing a chloro group at the 5th position of indole, showed lower activity in the range of 61.7 to 252.7 nM, compared to compounds containing a fluoro group and unsubstituted indole.

Continue....

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MD

The transmembrane hCA IX isoform, which is expressed exclusively in tumors, was also strongly inhibited by the synthesized compounds in the medium nanomolar range (K_is = 34.9 nM to 0.3246 μM).

Compounds 6d, 6e, 6f, and 6i showed equipotent nanomolar activity with AAZ, with K_is ranging from 34.9 nM to 41.3 nM. Among these compounds, 6i showed the best activity (K_i = 34.9 nM) against hCA IX isoform.

The cytosolic hCA I and hCA XIII isoforms were inhibited by all synthesized compounds in the high nanomolar range (K_is > 500 nM). However, compounds **6b** and **6d** showed moderate activity with K_is of 69.8 nM and 65.8 nM respectively against hCA XIII isoform.

From the above structure–activity relationship, it was found that compound 6i was the most potent compound with a K_i values of 7.7 nM against hCAII and 34.9 nM against hCA IX.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MD

Conclusions

In conclusion, we report here the synthesis of a series of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids (6a–6o).

The structures of these compounds where confirmed by different spectral and elemental analyses methods.

The Biological evaluation of sulfonamides was performed against hCA I, hCA II, hCA IX, and hCA XIII. All compounds showed low to moderate inhibitory activity against hCA II and hCA IX isoforms, at concentrations in the range between 7.7 nM and 0.3246 μM.

Compound 6i emerged as a potent hCA II and hCA IX inhibitor (K_i = 7.7 nM against hCA II and 34.9 nM against hCA IX).

The compounds 6b and 6d was showed activity at medium nanomolar concentrations, with K_i of 69.8 nM and 65.8 nM, respectively, against hCA XIII isoform. Thus, the compound 6i can be emerged as a novel potential lead compound to develop selective carbonic anhydrase inhibitors against the hCA II isoform.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

1H NMR spectra of 6f

sponsored: MDPI

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Mass spectra of compound 6g

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Acknowledgments

I thankful to the Department of Pharmaceuticals, Ministry of Chemicals and fertilizers, Govt. of India, New Delhi, for awarding NIPER Fellowship.

The Italian Ministry for University and Research, MIUR is also thanked for a grant to CTS (PRIN: rot. 2017XYBP2R).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Thank You