Synthesis and biological evaluation of new enantiopure 4-aminoalcohol-quinoline and -fluorene hybrids as antimalarial drugs

Camille Tisnerat⁽¹⁾, Jérémy Schneider⁽¹⁾, René Pemha⁽¹⁾, Céline Damiani⁽¹⁾, Patrice Agnamey⁽¹⁾, Catherine Mullié⁽¹⁾, Anne Totet⁽¹⁾, Alexandra Dassonville-Klimpt⁽¹⁾, Pascal Sonnet⁽¹⁾

⁽¹⁾AGIR, UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France

camille.tisnerat@etud.u-picardie.fr

laboratory has developed an Our synthesis asymmetric to prepare 4-aminoalcohol-quinolines (AQ) and -fluorenes (AF) as enantiopure MQ and LM analogs from a key epoxyde 5.⁴⁻⁸

IC₅₀ : on nanomolar range Eudysmic ratio: 1.0 to 22.9 Selectivity index > 145

Mainly caused by Plasmodium falciparum Parasite resistance to antimalarials³

↓ sensibility to artemisinins + genic mutations - efflux pump to MQ / LM

Covalent conjugation of antimalarial compounds with efflux pump inhibitors (EPI) can allow to struggle resistant parasites?

3

Aim

Inspired from known reversal agents, ⁹ we designed new enantiopure AQ and AF **1-4** with EPI pattern under two series: benzhydryl/trityl (series 1) and adamantyl (series 2).

<u>Synthesis of the key epoxyde</u>

From 4-hydroxyquinoline 7 and fluorene 11, the vinyl derivatives 9 and 15 were obtained respectively in 2 and 4 steps with 69% and 60% overall yield. Then, a Sharpless asymmetric dihydroxylation followed by a cyclization led to enantiopure epoxydes. Thus, **5a** and **5b** were synthesized in 4 and 6 steps respectively in 36% to 48% overall yield with enantiomeric excesses higher than 85%.

12

Synthesis of hybrids

11

Biological results

NCS HCI 37%

MeCN

0-20°C, 20h

78%

Amino-moities IPE 6 were synthesized in one to five steps, in 35% to quantitative overall yields (not exposed herein). Hybrids were then obtained by a regioselective attack on 4-oxirane **5** under micro-waves with 1.5 to 3 equivalents of EPI **6**.

Acetyl chloride

AICI₃

DCM (anh)

0-20°C, 62h

80%

Nowadays, sixteen 4-AQ and seven 4-AF hybrids were obtained with a yield range from 41% to quantitative. First analysed compounds have suitable enantiomeric excesses, higher than 87%. Last syntheses and analyses are under progress.

By a SYBR Green I fluorescence method, the *in vitro* antimalarial activity was evaluated against *Pf*3D7 and *Pf*W2 strains. Pleasingly, all IC₅₀ were in nanomolar range, except for the compound 4c-(R). In series 1, compounds 1a and 1d-(R) present the better activity, proving the interest of benzhydryl- and trityl-ethane diamine as EPI. Equally for **3a** and the adamantyl-ethane diamine in series 2. Interestingly, **3b** shows the best eudysmic ratio, whatever the strain, and **3c** presents a good activity less than 15 nM. First results lead toward a better activity of 4-AQ moities than 4-AF. Evaluated against HepG2 cells, cytotoxicity (IC₅₀) was ranged from 2.5 to 28.1 μ M, giving selectivity index (HepG2/PfW2) superior to 110, except for 1c-(R), and closed to 4 170 for **1d-(***R***)**.

Compounds		Activity - IC ₅₀ (nM)		Eudysmic ratio		
Series	R ₁		<i>Pf</i> 3D7 ^a	<i>Pf</i> W2 ^b	<i>Pf</i> 3D7	PfW2
1	- AQ -	1a-(<i>S</i>)	5.0 ± 0.51	6.5 ± 1.26	1.4	2.1
		1a-(<i>R</i>)	6.8 ± 1.33	3.1 ± 0.38		
		1b-(<i>S</i>)	26.5 ± 1.61	9.2 ± 1.06	2.0	3.2
		1b-(<i>R</i>)	53.6 ± 5.08	29.3 ± 4.9		
		1c-(<i>S</i>)	75.7 ± 9.59	63.0 ± 3.74	1.7	1.2
		1c-(<i>R</i>)	45.1 ± 5.43	76.5 ± 5.06		
		1d-(<i>S</i>)	< 40	42.3 ± 10.5	nd	35
		1d-(<i>R</i>)	2.36 ± 0.2	1.2 ± 0.2		
	AF	2a-(<i>R</i>)	33.3 ± 4.06	16.7 ± 2.3	nd	nd
2	- AQ -	3a-(<i>S</i>)	6.8 ± 2.2	12.7 ± 5.8	1.7	2.0
		3a-(<i>R</i>)	11.4 ± 3.9	6.2 ± 0.2		
		3b-(<i>S</i>)	34.9 ± 2.0	18.5 ± 9.2	14.2	14.6
		3b-(<i>R</i>)	494.9 ± 176.7	271.2 ± 3.7		
		3c-(<i>S</i>)	14.1 ± 1.5	7.0 ± 0.8	2.3	1.9
		3c-(<i>R</i>)	6.2 ± 3.7	3.6 ± 0.4		
		3d-(<i>S</i>)	41.0 ± 6.4	19.6 ± 1.5	2.9	3.9
		3d-(<i>R</i>)	13.9 ± 7.1	5.0 ± 2.5		
	4-AF _	4a-(<i>R</i>)	57.1 ± 8.12	55.3 ± 7.41	nd	nd
		4c-(<i>R</i>)	> 1 000	> 1 000	nd	nd
		4d-(<i>R</i>)	482.0 ± 110.9	> 500	nd	nd
Chloroquine			75.9 ± 3.0	198.8 ± 27.0		
Mefloquine			79.7 ± 8.5	31.8 ± 1.0		

Conclusion

Hybrids were synthesized with good yields following a synthesis in 5 to 7 steps. Most of evaluated compounds were more active than the CQ and MQ (whatever the strain). Interestingly, 1d-(R) shows the best activity, inferior to 3 nM, and selectivity index. The benzhydryl- and trityl-ethane diamine turned out as the best EPI. The promising couple **1b** has a good selectivity index, higher than 980. Moreover, eudysmic ratio were found, and was even high for **1d** and **3b**, proving the added value of asymmetric synthesis.

Thanks to these first results, the covalent conjugation of enantiopure AQ and AF-based antiplasmodial compound with EPI is promising for next studies.

References: ¹World Malaria Report, WHO, **2019**; ²Guidelines for the Treatment of malaria, 3RD edition, WHO, 2015; ³Saunders, Vanachayangkul, Lon, N. Engl. J. Med. 2014, 371 (5), 484–485 ; ⁴Burgess, Selzer, Kelly, et al. J. Med. Chem. 2006, 49 (18), 5623–5625 ; ⁵Jonet, Dassonville-Klimpt, Da Nascimento, et al. Tetrahedron : Asymmetry. 2011, 22 (2), 138-148 ; ^{6a}Mullié, Taudon, Degrouas, et al. Malaria Journal. 2014, 13:407 ; ^{6b}Jonet, Dassonville-Klimpt, Mullié-Demailly, et al. EP 11154229. Déposé le 11.02.2011 ; ⁷Bentzinger, De Souza, Mullié, et al. Tetrahedron : Asymmetry. 2016, 27 (1), 1-11 ; ⁸Mullié, Jonet, Desgrouas, et al. Malaria Journal. 2012, 11:65; ⁹Bhattacharjee, Kyle, Vennerstrom, et al. J. Chem. Inf. Comput. Sci. 2002, 42 (5), 1212-1220.

6th International Electronic Conference on **Medicinal Chemistry**

1-30 November 2020

