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Abstract: Assessing damage evolution in Carbon Fiber Reinforced Polymer (CFRP) composites is 

an intricate task due to the complex mechanical response of the composites. The acoustic emission 

technique (AE) is a non-destructive technique based on the recording of sound waves generated 

inside the material as a consequence of the presence of active defects. Proper analysis of the recorded 

waves can be used for monitoring damage evolution in many materials including composites. The 

acoustic track associated with the entire loading history of the sample or the structures is usually 

followed by using some descriptors such as the amplitude of the sound waves, the number of counts 

and so on. In this paper the acoustic emission in CFRP single lap shear joints will be monitored by 

using a multiparameter approach based on the contemporary analysis of multiple features such as 

ASL, Initiation Frequency, Reverberation Frequency and so on to understand if a proper 

combination of them can be adopted for a more robust description of damage propagation in CFRP 

structures. For selecting the best features, Principal Component Analysis (PCA) is used. The selected 

features are classified into different clusters using Fuzzy c-means (FCM) data clustering for 

analyzing the damage modes.  

Keywords: acoustic emission; CFRP; fuzzy c-means; principal Component Analysis (PCA); 

initiation frequency; reverberation frequency; Single Lap Shear (SLS); 

 

1. Introduction 

Acoustic Emission (AE) technique is based on the detection and interpretation of sound waves, 

caused by rapid internal displacements in a material, travelling at an ultrasonic velocity [1,2]. The 

formation and propagation of cracks due to different damage sources are the sources of these acoustic 

signals. In simple words, when a material is locally deformed irreversibly, it releases energy in the 

form of elastic waves and the AE technique is based on the analysis of these elastic waves. The 

characteristics of these elastic waves are studied in their frequency domain or time-frequency domain 

using different types of waveform analysis [3].  

The waveform analysis involves post-processing of the acoustic signals after acquisition. This 

post-processing sometimes requires high computational power and consumes lots of storage space. 

Especially, when the continuous acoustic signals are studied in their time-frequency domain, the data 

processing consumes lots of time. For these reasons, the acoustic signals can be characterized in terms 

of their energy, peak amplitude/frequency, duration, risetime and so many other different 

parameters. These parameters are derived from the acoustic signals that can define the characteristics 

of the acoustic source.  
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There exists a longstanding debate on which are the most relevant parameters that can be used 

for describing the damage characteristics most efficiently [3]. Peak amplitude and peak frequency of 

the waveform often standout as the best parameter for defining the characteristics of the acoustic 

source. In the last 5 years, several researchers have evidently proved that the peak amplitude and 

peak frequency of the acoustic waveform mislead information about the damage characteristics, 

especially in Fiber Reinforced Polymer (FRP) composites [4–6]. This is because several damage 

characteristics release acoustic waveforms with the same peak frequency. For instance, in a Carbon 

Fiber Reinforced Polymer (CFRP) material, the fiber breakage during a static tension loading releases 

acoustic signals with the same frequency as the interlaminar crack propagation [4].  

Analyzing the acoustic emission signals only based on their peak frequency is the reason for this 

anomaly. To avoid this erroneous description of the damage characteristics of the acoustic source, a 

multiparameter approach is required. The debate resumes once again on the conception of the 

multiparameter approach: what are the parameters that can be selected? Few researchers have used 

risetime and rise angle (RA) of the acoustic waveforms [7], while some others used absolute energy 

[8]. A definite set of parameters has not been defined specifically as the optimal set of parameters for 

analyzing the damage characteristics.  

Recently, Guel et al. [9] used a multiparameter approach by integrating the acoustic results 

recorded from two different types of piezoelectric sensors. The parameters they used for this analysis 

are centroid frequency, peak frequency and energy. Although these parameters have been commonly 

used by several researchers in the past, Guel et al. used an exploratory data analysis for selecting 

these parameters [9]. Nonetheless, the parameters they have used for analysis are quite common in 

literature.  

In this research work, the Principal Component Analysis (PCA) is used for identifying the sets 

of parameters for analysis. The initial parameter set which is considered are the peak amplitude, 

Absolute Signal Level (ASL), Initiation Frequency (I-Frequency), Peak Frequency (P-Frequency), 

Average Frequency (A-Frequency) and Reverberation Frequency (R-Frequency). These parameters 

may represent the characteristic features of the waveform. Besides, during the preliminary analysis 

and our previous research works [6], the authors have identified that the acoustic signals observed 

from different damage modes are highly unsymmetrical. The propagation of the acoustic signals 

released from the different damage sources may be responsible for the asymmetry of these signals. 

For this reason, the I-Frequency and R-Frequency alongside with other AE signals are considered for 

analysis.  

The selected signals are clustered using the Fuzzy c-means data clustering technique into 

different classes. In this research work, the acoustic signals used are recorded from CFRP laminates 

bonded in Single Lap Shear (SLS) configuration, which are subjected to a static tensile load. An 

attempt has been made to correlate the AE parameters, which are selected using PCA and clustered 

using Fuzzy c-means, with the different damage modes. The novelty of this work is the usage of I-

Frequency and R-Frequency, which poorly investigated in literature for damage characterization in 

CFRP. 

The introduction about CFRP composites and their damage modes can be found in several 

standard textbooks and literature [10–12]. Similarly, the basic introduction about the AE technique 

and its application on the damage propagation analysis in CFRP can also be found in standard 

textbooks and several review articles [2,3,13–15]. For avoiding any redundant information, basic 

introductions are not provided in this section. The definitions of the AE parameters which are used 

in this study are presented in the subsequent sections.  

2. Experimental Procedure 

2.1. Materials 

CFRP specimens in Single Lap Shear (SLS) configuration are used in this study. The CFRP 

prepreg laminates are prepared by impregnating high strength carbon fibers in the epoxy matrix 

(SATTI CIT CC206 ER 460). The carbon fibers are woven in the epoxy matrix in a stitched 



Proceedings 2020, 2020 3 of 12 

 

configuration. The laminate plies which have a nominal thickness of 0.244 mm are cured by the 

autoclave method. The upper and lower adherend for the SLS configuration is prepared by the 

autoclave method. Then a high-strength epoxy adhesive EA9395 with a shear strength of 25 MPa and 

a peel strength of 65 MPa is used for bonding the upper and lower adherend in the SLS configuration. 

The dimensions of the specimens, the laminate layup configuration and other dimensional details are 

presented in Table 1. A total of 3 specimens are tested for this research work and are named SLS 1, 

SLS 2 and SLS 3.  

Table 1. SLS Specimen Nomenclature, Geometry and Configurations. 

Upper Adherend 

Length lu (mm) Width bu (mm) Thickness hu (mm) No. of Plies Stacking Sequence 

101.6 ± 0.11 25.33 ± 0.12 1.3 ± 0.05 5 +45/+45/+45/−45/+45 

Lower Adherend 

Length ll (mm) Width bl (mm) Thickness hl (mm) No. of Plies Stacking Sequence 

101.6 ± 0.09 25.33 ± 0.14 6.4 ± 0.12 26 +45/[+45/−45]12/+45 

Overlapping Region 

Length lor (mm) Width bor (mm) Thickness hor (mm) 

26 ± 0.12 25.33 ± 0.25 8.5 ± 0.11 

2.2. Experimental Setup  

Two narrowband general-purpose piezoelectric sensors R-30α (Physical Acoustics, MISTRAS 

Group, Princeton Junction, NJ, USA) are mounted on the SLS specimens for recorded the acoustic 

signals. The sensors have an operating range of 150 kHz to 400 kHz. The sensors are mounted on the 

specimens at a distance of 40 mm from the center. The acoustic events generated between this distance, 

which covers the adhesive overlap region, is recorded for this study. A thin layer of silicone gel 

separates the piezoelectric transducer surface and the specimen for improving the acoustic coupling 

and also to avoid recorded any reverberating signals. All the AE signals are amplified by 40 dB using a 

2/4/6 AE pre-amplifier. The acoustic waveforms are recorded at a sampling rate of 1 MSps (1 mega 

sample per second). The threshold for acquisition is set as 40 dB.  

For the static tensile loading, the ASTM D5868—Standard Test Method for Lap Shear Adhesion 

for Fiber Reinforced Plastic (FRP) Bonding is followed [16]. The static tensile loading is applied in a 

displacement-controlled mode at a crosshead displacement speed of 13 mm/min. The SLS specimens 

carry most of the load in the adhesive overlap region under the displacement-controlled testing mode. 

All the tests are carried out in the INSTRON Servo-Hydraulic testing machine, which has a loading 

capacity of 100 kN.  

2.3. Acoustic Emission Features 

The acoustic emission descriptors considered for this study are explained in this section. First, 

the most commonly used parameter Peak Amplitude is used. It represents the largest voltage peak 

of the recorded AE signal (𝑈𝑚𝑎𝑥) with respect to the reference voltage (𝑈𝑟𝑒𝑓) set at the pre-amplifier. 

It is measured in decibels (𝑑𝐵) and it can be expressed as,  

𝐴 = 20 𝑙𝑜𝑔
𝑈𝑚𝑎𝑥

𝑈𝑟𝑒𝑓

, 
(1) 

Unlike the peak amplitude, which only represents the largest voltage peak, the average signal 

level (ASL) measures both the negative and positive amplitudes in an acoustic signal with equal 

weight. In simple words, it provides the average level of the signal in decibels. It can be expressed in 

volts as, 

𝐴𝑆𝐿𝑣 =  
1

𝑇
∫ |𝑉𝑖|𝑑𝑡

𝑡0+𝑇

𝑡0

=  
1

𝑁
∑ |𝑉𝑖(𝑛)|

𝑁

𝑛=1
, 

(2) 

where, 𝑁 is the total number of discretized signal points, 𝑉𝑖 is the transient voltage and 𝑇 is the 

duration of the signal. The ASL in dB can be expressed as, 
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𝐴𝑆𝐿 = 20 log (
𝐴𝑆𝐿𝑣

1𝜇𝑉
), 

(3) 

Initiation Frequency (I-Frequency) measures the characteristic frequency of the acoustic signal 

before the peak amplitude is recorded. It is the ratio of the total number of acoustic counts before the 

peak amplitude (P-Counts) and the duration of the signal for that same instant (Risetime).  

I − Frequency =  
P. Counts

Risetime
, 

(4) 

Reverberation Frequency (R-Frequency) is the exact opposite measure of the I-Frequency. It 

measures the characteristic frequency of the signal after the peak amplitude. It is the ratio of the 

number of counts after the peak amplitude (Ringdown Counts) and the duration of the signal after 

that same instance. 

R − Frequency =  
Ringdown Counts

Duration − Risetime 
, 

(5) 

Average Frequency (A-Frequency) is the ratio of the total number of counts recorded above the 

threshold of acquisition and the duration of the signal.  

A − Frequency =  
Counts

Duration
, 

(6) 

Peak frequency of the AE signal is the frequency with the largest magnitude when the signal 

coefficients are analyzed in their frequency domain using Fast Fourier Transform (FFT).  

These are the parameters that are considered for this study. The method of selecting the best 

parameters among the aforementioned parameters and the procedure followed for clustering the 

selected parameters are presented in the next section.  

2.4. Methodology for Data Clustering 

The different AE features are the characteristic representation of the acoustic waveform. Many 

of these AE features are closely in relation to one another. For example, the absolute energy of the AE 

signal and the ASL are directly in relationship with the RMS voltage. Absolute energy is directly 

proportional to the square of the RMS voltage, while ASL is in analogous with RMS voltage with the 

only difference being RMS voltage is measured in 𝑚𝑉 or µ𝑉, whereas ASL is measured in dB. In that 

context, using both RMS voltage and ASL for analyzing the signal characteristics is redundant. 

The Principal Component Analysis (PCA) is the multivariable data reduction technique. The 

core idea of the PCA is to reduce the dimensionally of the data set, which has a large number of 

interrelated variables, which is essentially the case in this research work. The data reduction is done 

while retaining as much as possible of the variation present in the data set. The data reduction is 

achieved by reducing the data dimensions into new correlated features, called principal components, 

which are minimally correlated.  

These principal components form a symmetric matrix, with the eigenvectors of the matrix forms 

the elements of the matrix. These eigenvectors can be defined as the characteristic vectors of the 

matrix. They are unique in a way that they remain directionally invariant under linear transformation 

by its parent matrix. The other details about this analysis can be found in the source article presented 

by Hotelling [17]. The procedure for calculating the principal components is summarized by 

Maćkiewicz and Ratajczak [18].  

The multi-parameters are reduced using PCA and the characteristic parameters are selected for 

analysis. Then these selected parameters are clustered using the Fuzzy c-means (FCM) data clustering 

method. The FCM is a data clustering method for any 2-dimensional data. The dataset is clustered 

into a predefined number of clusters in FCM [19]. Unlike other data clustering methods, in which all 

the datapoints belong to only one cluster, in FCM, the datapoints belong to all the clusters to some 

degree. The degree of membership is based on the distance between the datapoint and the centroid 

of each cluster. The datapoint has a large degree of membership with the cluster with the closest 

centroid, while it has a smaller degree of membership with the cluster with the farthest centroid. 

https://www.sciencedirect.com/science/article/pii/009830049390090R#!
https://www.sciencedirect.com/science/article/pii/009830049390090R#!
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The assignment of centroids and the datapoints to each cluster is determined by the objective 

function. By iterating, the distance from any given data point to a cluster center weighted by the 

membership of that data point in the cluster. 

The detailed procedure for performing FCM on a dataset can be found elsewhere. Both the PCA 

and FCM are popular data analysis methods and their procedures are described in several literature 

over the years [17–19]. Thus, they are not provided here. Both FCM and PCA are carried out in 

MATLAB® ; FCM is supported by the Fuzzy logic toolbox in MATLAB® . 

3. Results and Discussions 

The AE data from testing SLS specimens SLS 1, SLS 2 and SLS 3 are recorded using the pair of 

piezoelectric sensors. The parameters mentioned in Section 2.3 are derived from the PAC PCI-2 data 

acquisition system. 

3.1. PCA for Data Reduction and Selection of AE Features 

The input parameters peak amplitude, ASL, I-Frequency, R-Frequency, P-Frequency and A-

Frequency are reduced into their eigenvector matrix using the PCA. The variances of the eigenvalues 

of the eigenvector matrix or the different principal components are also calculated. The scree plots 

describing the variance of different principal components are presented in Figure 1. 

 
 

(a) (b) 

 
(c) 

Figure 1. Scree Plot for different Principal Components for the dataset of (a) SLS 1 (b) SLS 2 and (c) 

SLS 3. 
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The variances of the first and second principal components are significantly larger than the 

remaining components combined together. Thus, dataset is reduced only into the first two principal 

components PC 1 and PC 2. 

For the reduced data, the eigenvalues of the principal components PC 1 and PC 2 of all the AE 

parameters are presented in Figure 2. It can be observed that the peak amplitude, peak frequency and 

amplitude form a group with the eigenvalues of PC 1 and PC 2 close to each other. Therefore, a 

representative AE parameter from this group is selected for further analysis. In this work, the peak 

amplitude is selected as the representative from the group. 

It can also be observed from Figure 2 that the I-Frequency, R-Frequency and A-Frequency have 

large variations in their eigenvalues for PC 1 and PC 2 and cannot be constituted into a group. This 

means that there exists a large variation in these parameters. Therefore, the I-Frequency and R-

Frequency are considered for the analysis. 

 

Figure 2. Principal Components PC 1 and PC 2 for all the parameters selected for all specimens. 

From the PCA results, three parameters from the initially assigned group of six parameters are 

selected: Amplitude, I-Frequency and R-Frequency. Instead of going through a rigorous process of 

analyzing all the parameters and finding the optimal parameters for analysis, PCA reduces the 

dimensionality of the dataset into three parameters. For comparison purposes, the amplitude from 

the group of ASL, Amplitude and P-Frequency is compared from I-Frequency and R-Frequency. 

There is a specific reason for comparing the Amplitude with these two parameters. For several 

years in the research of damage assessment using AE, the peak amplitude values are directly related 

to the damage modes. For instance, the most general trend is that the AE signals with an amplitude 

above 60–70 dB represent fiber breakage, 35–50 dB represents matrix cracking and 50–60 dB 

represents fiber debonding or delamination. There is no definite value for this correlation of the 

amplitude with damage modes. Different authors use different values based on their own 

experimental results. A summary of this information can be found in several literature [3,20]. 

In recent years, however, some researchers have evidently argued that the AE signals with high 

amplitude not only represents the fiber breakage but also the interlaminar crack growth [4]. This is 

because of the mode of propagation and the degree of absorption of the AE waveforms. The peak 

amplitude only corresponds to the largest voltage peak and the modes of propagation and the degree 
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of absorption in the propagation medium are ignored. For this reason, the I-Frequency and R-

Frequency are considered for this study. 

Since the decaying frequency of the AE signals can be defined by the R-Frequency, while the I-

Frequency can define the characteristics of the initiation level before the largest amplitude is 

recorded. For this reason, in this research work, the peak amplitude is compared with the I-Frequency 

and R-Frequency for analysis. 

3.2. Fuzzy c-Means Data Clustering Results 

The I-Frequency and R-Frequency over the different amplitudes of the recorded AE events are 

clustered using the FCM clustering technique. Initially, for selecting the optimal number of clusters, 

the Davies-Bouldin Index (DBI) is calculated for the above-mentioned data. The DBI with the 

minimum value for the different clusters 𝑁 = 1, 2, … , 6 is supposed to be selected as the optimal 

number of clusters. For all sets of data recorded for SLS 1, SLS 2 and SLS 3, the DBI value returned 

the lowest for 𝑁 = 3. The FCM is used for clustering I-Frequency and R-Frequency into three clusters. 

The clustered data of I-Frequency and R-Frequency, respectively, over amplitude is presented in 

Figures 3 and 4 for all SLS specimens. 

  
(a) (b) 

 
(c) 

Figure 3. I-Frequency vs. Amplitude plotted clustered into 3 clusters using FCM for (a) SLS 1 (b) SLS 

2 and (c) SLS 3 specimens. 

The clustered data in Figure 3 shows that despite the peak amplitude level, the R-frequency of 

the recorded waveforms varies significantly. Similar results are also observed in Figure 4 for the R-

Frequency. Besides, the frequency levels in I-Frequency and R-Frequency in Figures 3 and 4 are not 

also very similar. This also means that the frequency rate of absorption, which can be indicated by 

the R-Frequency varies significantly from the I-Frequency. A question may arise, why the I-
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Frequency ranges from 0 kHz to 1000 kHz, while the R-Frequency is only below 500 kHz. The I-

Frequency is calculated from Equation (4), which is the ratio of 𝑃. 𝐶𝑜𝑢𝑛𝑡𝑠  and 𝑅𝑖𝑠𝑒𝑡𝑖𝑚𝑒 . If the 

second count or the third count of the AE waveform has the largest amplitude or magnitude in its 

FFT spectrum, then the 𝑃. 𝐶𝑜𝑢𝑛𝑡𝑠 is counted as 1 or 2, respectively. This also means that there is a 

huge possibility that the 𝑅𝑖𝑠𝑒𝑡𝑖𝑚𝑒 can be very short during these instances. This is the reason for the 

wide range of I-Frequency compared to the R-Frequency. 

  
(a) (b) 

 
(c) 

Figure 4. R-Frequency vs. Amplitude plotted clustered into 3 clusters using FCM for (a) SLS 1 (b) SLS 

2 and (c) SLS 3 specimens. 

The clusters in I-Frequency can be classified as follows: Cluster 1 has AE signals with low 

amplitude but with I-Frequency spread between 0 kHz to 1000 kHz; Cluster 2 has AE signals with 

moderate amplitude (mostly between 55 dB and 75/80 dB) with I-Frequency spread between 0 kHz 

and 700 kHz; Cluster 3 has the signals with higher amplitude (>75/80 dB) but with I-Frequency spread 

between 0 kHz and 500 kHz, ignoring the outliers. Since I-Frequency is inversely proportional to the 

𝑅𝑖𝑠𝑒𝑡𝑖𝑚𝑒, it can be used as a parameter for classifying the type of damage mode, the AE signals have 

their source. Several reports have indicated the AE signals with larger peak amplitude and shorter 

𝑅𝑖𝑠𝑒𝑡𝑖𝑚𝑒  correspond to the source as interlaminar crack, while the signals with smaller peak 

amplitude and longer 𝑅𝑖𝑠𝑒𝑡𝑖𝑚𝑒 may correspond to the shearing mode under the tensile loading. In 

analogous with that observation, the differences between the shearing mode and interlaminar crack 

can be identified [3,5,7]. A detailed explanation of how to identify the damage sources is presented 

in the next section. 

The R-Frequency represents the amount of absorption of the AE signals. The AE signals 

generally propagate in two different modes: symmetrical and asymmetrical. The symmetrical mode 

AE signals carry a lower frequency component, but has less dispersion in its energy during the 
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propagation. The low amount of dispersion means that the R-Frequency possibly can be high for 

symmetrical mode. The AE signals generated from matrix cracking and delamination release AE 

signals, which propagate in symmetric mode. On the contrary, the AE signals, which are propagating 

in asymmetric mode has a higher frequency and disperse more during propagation. The asymmetric 

mode AE signals possibly can have lower R-Frequency compared to the symmetric mode AE signals. 

These asymmetric AE signals mostly have fiber breakage or interlaminar crack growth as their AE 

source. 

3.3. Damage Assessment Using AE Descriptors 

For assessing the damage modes properly, it is essential to map the AE descriptors with the load 

response of the SLS specimens. The clustered AE data are plotted over the load response of the SLS 

specimens for detailed analysis. The SLS load response results with I-Frequency and amplitude are 

presented in Figure 5, and the results with R-Frequency and amplitude are presented in Figure 6. 

  
(a) (b) 

 
(c) 

Figure 5. Load, Amplitude and Clustered I-Frequency vs Time for (a) SLS 1 (b) SLS 2 and (c) SLS 3 

specimens. 

In Figure 5a, the amplitude and clustered I-Frequency are plotted over the load response of the 

SLS 1 specimen. First of all, the load responses have multiples load peaks before the final fracture. In 

our previous works, the authors classified these peaks as regions of initial rupture and final rupture. 

For SLS 1, the initial rupture occurs at 7.05 kN and the final rupture at 7.75 kN. From the point of 

initial rupture to the final rupture (roughly between 1.75 s and 2.75 s, the majority of the I-Frequency 

components are in Cluster 3. Comparing this observation with Figure 3a, it can be identified that 

these clusters belong to the category of AE signals with high amplitude and low I-Frequency (<200 

kHz). Similarly, if the results are compared with Figure 6a and Figure 4a, again, the AE signals have 



Proceedings 2020, 2020 10 of 12 

 

low R-Frequency (<200 kHz). This infers that the signals are highly symmetric since both I-Frequency 

and R-Frequency are below 200 kHz, at the same time, the peak amplitude is higher. These types of 

AE signals normally have interlaminar crack growth as their source. If the same Figures are compared 

for the initial stages of load response, say before 0.5 s, the I-Frequency and R-Frequency are highly 

asymmetric. In our previous reports, the authors have indicated that this initial loading stage may 

represent the sliding of the specimen inside the loading grips [21]. The next important stage is the 

stage between the initial stage and the initial rupture (between 0.75 s and 1.75 s). In Figure 5a, most 

of the AE signals have I-Frequency in Cluster 1 and Cluster 2. A similar observation can be found in 

R-Frequency in Figure 6a. Owing to the absence of Cluster 3 in I-Frequency and R-Frequency, the 

damage modes in these regions are probably due to the matrix cracking and delamination. It has been 

indicated by several researchers that in adhesive bonded components, under static loading 

conditions, a majority of the load is carried by the adherends [22,23]. The delamination, however, will 

initiate at the vicinity of the adhesive layer and the adherend and extends through the thickness of 

the adhesive layer. The region before the initial rupture has suffered extensive microcracking in the 

thick adhesive layer and the delamination has initiated. However, the specimen SLS 1 retains its load-

carrying capability until it reaches 7.75 kN. During this transition stage, the crack had grown through 

the thickness, releasing AE signals with high symmetry between I-Frequency and R-Frequency, 

resulting in the final fracture. 

  
(a) (b) 

 
(c) 

Figure 6. Load, Amplitude and Clustered R-Frequency vs Time for (a) SLS 1 (b) SLS 2 and (c) SLS 3 

specimens. 

In Specimen SLS 2 (Figures 5b and 6b), more than one load peak can be observed. Nonetheless, 

the major initial rupture occurs at 1.5 s with the load peak of 7.05 kN and the final rupture at 2.25 s 

at 5.96 kN. It is clear from this observation that the damage modes of SLS 2 are different from SLS 1. 
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However, there is an ambiguity in how this damage mode has progressed. Comparing these results 

with the I-Frequency and R-Frequency clusters of Figures 3b and 4b, the Cluster 3 signals of I-

Frequency and R-Frequency are distributed throughout the loading regions. Between the transition 

period of initial and final rupture, which extends only for 0.75 s, a significant number of Cluster 3 

signals are observed. Even though the stage is shorter in duration, these signals still refer to the 

interlaminar crack growth. The distribution of Cluster 3 throughout the loading stages indicates that 

the crack growth has initiated at a very early stage in SLS 2. This is probably the reason for the very 

low final rupture load (5.96 kN) compared to SLS 1 specimen. 

The results of SLS 3 specimens are presented in Figures 5c and 6c, which is almost identical to 

SLS 1. The interlaminar crack growth is observed between the initial and final rupture stages, which 

are at 5.93 kN (at 1.75 s) and 7.36 kN (at 2.75 s). The AE signals that correspond to the matrix cracking 

and delamination are distributed after the duration of 0.5 s. 

The I-Frequency and R-Frequency clustered data can provide information about the damage 

modes. More detailed analysis, such as counting the number of signals corresponds to matrix 

cracking and interlaminar crack growth and mapping them with the in-line fractographic analysis 

can provide detailed information about these parameters. 

4. Conclusions 

An Acoustic Emission multiparameter approach has been used for identifying the damage 

modes occurring in CFRP specimens configured in Single Lap Shear (SLS) configuration. First, from 

different AE features, the best features for analysis are selected by reducing their dimensions into 

principal components by PCA. Consequently, the Initiation Frequency (I-Frequency), Reverberation 

Frequency (R-Frequency) and Peak Amplitudes are chosen to be the best features for analysis. The 

selected features are clustered using the Fuzzy c-means (FCM) algorithm into three clusters. Each 

cluster has I-Frequency and R-Frequency distributed over their peak amplitudes. Then this clustered 

information is plotted over the load responses of the SLS specimens for identifying the damage 

modes. The future scope of this work is to extend this with an in-line fractographic analysis for 

directly relating the observed damage modes with the AE features. With this, the AE features can 

more effectively be used for damage analysis. 
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