**1st International Electronic Conference on Applied Sciences** 10–30 November 2020



# Numerical Evaluation of Protein Global Vibrations at Terahertz Frequencies by means of Elastic Lattice Models

D. Scaramozzino, G. Lacidogna, G. Piana, A. Carpinteri

Department of Structural, Geotechnical and Building Engineering Politecnico di Torino, Italy



**1st International Electronic Conference on Applied Sciences** 10–30 November 2020



## **Outline of the Work**

- 1. Introduction
- 2. Elastic Lattice Models (ELMs) for Protein Vibrations
- 3. Validation of the Numerical Models: B-factors
- 4. Protein Normal Modes and Biological Mechanism
- 5. Conclusions and Future Developments

1st International Electronic Conference on Applied Sciences 10–30 November 2020



**Protein:** Sequence of several different amino acids, with a complex three-dimensional shape and function



1st International Electronic Conference on Applied Sciences 10–30 November 2020



## The fundamental paradigm of protein action



#### 1. Introduction

1st International Electronic Conference on Applied Sciences 10–30 November 2020



## How to study the Structure – Dynamics relationship?

| Type of analysis                                        | Protein<br>representation       | Form of potentials               | Type of output  |
|---------------------------------------------------------|---------------------------------|----------------------------------|-----------------|
| Molecular Dynamics<br>(MD)                              | All atoms                       | Complex semi-<br>empirical       | Trajectories    |
| Normal mode analysis<br>(NMA)                           | All atoms                       | Multi-parameter<br>harmonic      | Normal<br>modes |
| All-atom Elastic Lattice<br>Model (aaELM)               | All atoms                       | Single-<br>parameter<br>harmonic | Normal<br>modes |
| <b>Coarse-grained Elastic<br/>Lattice Model (cgELM)</b> | Only one node per<br>amino acid | Single-<br>parameter<br>harmonic | Normal<br>modes |

ncreasing computational efficiency

Increasing model

complexity

**1st International Electronic Conference on Applied Sciences** 10–30 November 2020



## **Elastic Lattice Model (ELM)**

### From the single bar element...



## ... to the spatial ELM



1st International Electronic Conference on Applied Sciences 10–30 November 2020



## **Elastic Lattice Model (ELM) – Finite Element (FE) approach**

$$\mathbf{k_{i,j}}^* = \frac{E_{i,j}A_{i,j}}{L_{i,j}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 2x2 stiffness matrix of the elastic bar in the local system

$$\mathbf{N_{i,j}} = \begin{bmatrix} \frac{x_j - x_i}{L_{i,j}} & \frac{y_j - y_i}{L_{i,j}} & \frac{z_j - z_i}{L_{i,j}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{x_j - x_i}{L_{i,j}} & \frac{y_j - y_i}{L_{i,j}} & \frac{z_j - z_i}{L_{i,j}} \end{bmatrix}$$

2x6 rotation matrix of the elastic bar, between the local and global systems

 $\mathbf{k}_{i,j} = \mathbf{N}_{i,j}^{T} \mathbf{k}_{i,j}^{*} \mathbf{N}_{i,j}$ 

6x6 stiffness matrix of the elastic bar in the global system

#### 2. Elastic Lattice Models (ELMs) for Protein Vibrations

1st International Electronic Conference on Applied Sciences 10–30 November 2020



#### **Elastic Lattice Model (ELM) – Finite Element (FE) approach**

$$\mathbf{k}_{i,j} = \mathbf{N}_{i,j}^{T} \mathbf{k}_{i,j}^{*} \mathbf{N}_{i,j} = \begin{bmatrix} \alpha_{i,j} & -\alpha_{i,j} \\ -\alpha_{i,j} & \alpha_{i,j} \end{bmatrix}$$

$$\boldsymbol{\alpha}_{i,j} = \frac{E_{i,j}A_{i,j}}{L_{i,j}} \begin{bmatrix} \frac{\left(x_j - x_i\right)^2}{L_{i,j}^2} & \frac{\left(x_j - x_i\right)\left(y_j - y_i\right)}{L_{i,j}^2} & \frac{\left(x_j - x_i\right)\left(z_j - z_i\right)}{L_{i,j}^2} \\ \frac{\left(x_j - x_i\right)\left(y_j - y_i\right)}{L_{i,j}^2} & \frac{\left(y_j - y_i\right)^2}{L_{i,j}^2} & \frac{\left(y_j - y_i\right)\left(z_j - z_i\right)}{L_{i,j}^2} \\ \frac{\left(x_j - x_i\right)\left(z_j - z_i\right)}{L_{i,j}^2} & \frac{\left(y_j - y_i\right)\left(z_j - z_i\right)}{L_{i,j}^2} & \frac{\left(z_j - z_i\right)^2}{L_{i,j}^2} \end{bmatrix}$$

6x6 stiffness matrix of the elastic bar in the global system

1st International Electronic Conference on Applied Sciences 10–30 November 2020



**Elastic Lattice Model (ELM) – Finite Element (FE) approach** 

$$\mathbf{K} = \sum_{i,j \mid L_{i,j} < r_c} \mathbf{C}_{i,j}^{T} \mathbf{N}_{i,j}^{T} \mathbf{k}_{i,j}^{*} \mathbf{N}_{i,j} \mathbf{C}_{i,j}$$

3Nx3N stiffness matrix of the ELM

6x3N expansion matrix of the elastic bar to reach the dimension of the structural problem

C<sub>i,j</sub>

$$\mathbf{M_{i}} = \begin{bmatrix} m_{i} & 0 & 0\\ 0 & m_{i} & 0\\ 0 & 0 & m_{i} \end{bmatrix}$$

3x3 mass matrix of the *i*<sup>th</sup> node

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 & \dots & \mathbf{0} \\ \dots & \dots & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_N \end{bmatrix}$$

3Nx3N mass matrix of the ELM

1st International Electronic Conference on Applied Sciences 10–30 November 2020



### **Elastic Lattice Model (ELM) – Anisotropic Network Model (ANM)**

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{1,1} & \mathbf{H}_{1,2} & \dots & \mathbf{H}_{1,N} \\ \mathbf{H}_{2,1} & \mathbf{H}_{2,2} & \dots & \mathbf{H}_{2,N} \\ \dots & \dots & \dots & \dots \\ \mathbf{H}_{N,1} & \mathbf{H}_{N,2} & \dots & \mathbf{H}_{N,N} \end{bmatrix} \qquad \mathbf{H}_{i,j} = \begin{bmatrix} \frac{\partial^2 V_{i,j}}{\partial x_i \partial x_j} & \frac{\partial^2 V_{i,j}}{\partial x_i \partial y_j} & \frac{\partial^2 V_{i,j}}{\partial x_i \partial z_j} \\ \frac{\partial^2 V_{i,j}}{\partial y_i \partial x_j} & \frac{\partial^2 V_{i,j}}{\partial y_i \partial y_j} & \frac{\partial^2 V_{i,j}}{\partial y_i \partial z_j} \\ \frac{\partial^2 V_{i,j}}{\partial z_i \partial x_j} & \frac{\partial^2 V_{i,j}}{\partial z_i \partial y_j} & \frac{\partial^2 V_{i,j}}{\partial z_i \partial z_j} \end{bmatrix}$$
$$\mathbf{H}_{i,i} = -\sum_{j=1, j \neq i}^{N} \mathbf{H}_{i,j} \qquad V_{i,j} = \frac{\gamma}{2} \left( r_{i,j} - r_{i,j}^{0} \right)^2 \qquad \gamma \propto \frac{1}{r_{i,j}^{p}}$$

It can be easily demonstrated that there exists complete consistency between the FEbased ELM stiffness matrix *K* and the ANM Hessian matrix *H* 



1st International Electronic Conference on Applied Sciences 10–30 November 2020



**Elastic Lattice Model (ELM) – Modal Analysis** 



1st International Electronic Conference on Applied Sciences 10–30 November 2020



#### Effect of the selected cutoff value on the generated ELM



Lysozyme (PDB: 4YM8) – LUSAS FE software used for the construction of the model

1st International Electronic Conference on Applied Sciences 10–30 November 2020



#### How to set up the values of the axial rigidity *EA*? With the B-factors!

B-factors are a measure of the protein flexibility and can be found in the PDB file, as obtained from the X-ray crystallographic experiment



B-factors can also be associated to the normal modes

$$B_{i} = \frac{8}{3}\pi^{2}k_{B}T\sum_{n=7}^{3N}\frac{\delta_{i,n}^{2}}{\omega_{n}^{2}}$$

3. Validation of the Numerical Models: B-factors

1st International Electronic Conference on Applied Sciences 10–30 November 2020



### How to set up the values of the axial rigidity *EA*? With the B-factors!

Imposing that the average value of the computed B-factors matches the average value of the experimental ones allows to define the rigidity of the ELM elastic bars

| Model | Cutoff (Å) | Mean length of<br>the elastic bar (Å) | EA (pN) | Stiffness of the mean connection (N/m) |
|-------|------------|---------------------------------------|---------|----------------------------------------|
| Α     | 8          | 5.71                                  | 831     | 1.455                                  |
| В     | 10         | 7.21                                  | 235     | 0.326                                  |
| С     | 12         | 8.61                                  | 124     | 0.144                                  |
| D     | 15         | 10.59                                 | 71      | 0.067                                  |
| Е     | 20         | 13.46                                 | 45      | 0.033                                  |

1st International Electronic Conference on Applied Sciences 10–30 November 2020



### How to validate the models? With the B-factors!



Correlation coefficients from 57% to 72%! These are very high values if you think how much the model is simplified and how much the physics of the problem is complex!

**1st International Electronic Conference on Applied Sciences** 10–30 November 2020



#### Looking at the 1<sup>st</sup> vibration modes...



1st International Electronic Conference on Applied Sciences 10–30 November 2020



### Looking at the 2<sup>nd</sup> vibration modes...



#### 4. Protein Normal Modes and Biological Mechanism



1st International Electronic Conference on Applied Sciences 10–30 November 2020



### Does the cutoff parameter affect the mode shapes?



#### 1<sup>st</sup> vibration mode

#### **Absolute displacements**

MAC matrix



1st International Electronic Conference on Applied Sciences 10–30 November 2020



### Does the cutoff parameter affect the mode shapes?



#### 2<sup>nd</sup> vibration mode

#### **Absolute displacements**

MAC matrix

1st International Electronic Conference on Applied Sciences 10–30 November 2020



#### What about the vibrational frequencies?



... we are in the (sub-)THz frequency range!

4. Protein Normal Modes and Biological Mechanism

1st International Electronic Conference on Applied Sciences 10–30 November 2020



# Conclusions

- We have shown that simplified mechanical models, such as ELMs, can be efficiently used to extract the vibrational states of proteins;
- The computed B-factors from the normal modes have a good correlation with the experimental values, although the cutoff parameter has a certain influence;
- The resulting mode shapes are well correlated with the biological mechanism of the protein;
- The corresponding vibrational frequencies lie in the (sub-)THz frequency range;
- Might resonances at these frequencies play a role in the conformational changes and biological processes?

1st International Electronic Conference on Applied Sciences 10–30 November 2020



# **Future Developments**

#### What happens if we also apply (dynamic) forces to the protein ELM?

**MDOF forced modal analysis**  $\longrightarrow$  Ku + Mü = F sin( $\omega_F t$ )

$$\mathbf{u}(t) = \sum_{n=7}^{3N} \boldsymbol{\delta}_{\mathbf{n}} p_n(t) \longrightarrow p_n(t) = \frac{\boldsymbol{\delta}_{\mathbf{n}}^{T} \mathbf{F}}{\omega_n^2 - \omega_F^2} \left[ \sin(\omega_F t) - \frac{\omega_F}{\omega_n} \sin(\omega_n t) \right]$$

 $\omega_F^2 \rightarrow \omega_n^2 \longrightarrow$  Resonance according to the n<sup>th</sup> mode

**1st International Electronic Conference on Applied Sciences** 10–30 November 2020



## **Future Developments**

#### Toy model with random force field applied at various frequencies



4. Conclusions and Future Developments



1st International Electronic Conference on Applied Sciences 10–30 November 2020



## Thank you for your attention!



D. Scaramozzino, G. Lacidogna, G. Piana, A. Carpinteri (2019) A finite-element-based coarse-grained model for global protein vibration. *Meccanica*. 54, 1927-1940.