

Biopolymers based membranes for imitation blood-brain barriers

Author: Anastasia Belyaeva

Supervisors: Dr. Vladimir V. Chrishtop, Dr. Sofia M. Morozova

Saint-Petersburg, 2020

Blood-brain barrier structure

The blood-brain barrier (BBB) is a physiological barrier that actively interacts between the circulatory system and the central nervous system

The function of BBB barrier

It is known that the physiological permeability of the BBB is disturbed in various **pathologies** of the **Central nervous system** (ischemia, brain hypoxia, injuries and tumors, neurodegenerative diseases).

Therefore, if scientists can simulate the barrier, they can conduct optimal studies of the efficiency of drugs

Barrier model

The simulated barrier is composed of membranes and three types of basic cells, astrocytes, endothelial cells, and pericytes

Requirements for the membrane:

- the passage of water and small molecules
- formation of close contact with cells
- control of large molecules passage

Synthesize modified gelatin

Gelatin is a common biocompatible polymer that meets the requirements. Since gelatin is initially water-soluble, we modified it with methacrylate

Gelatin

Gelatin metacrylate

Reaction scheme

- gelatin metacrylate
- 1. 1g GelMa 10% + 0,001g photoinitiator 10 minutes UV
- 2. 1g GelMa 10% + 0,001g photoinitiator 20 minutes UV
- 3. 1g GelMa 10% + 0,0005g photoinitiator 10 minutes UV
- 4. 1g GelMa 10% + 0,0005g photoinitiator 20 minutes UV

As part of the work, we obtained modified gelatin membranes that differ in the degree of **cross-linking**. The degree of cross-linking was controlled by the amount of photoinitiator used to cross-link the gelatin methacrylate chains and the time of UV-radiation.

IR-spectrum

GelMA initial GelMA after polymerization

IR-spectrum

- 1. 1g GelMa 10% + 0,001g photoinitiator 10 minutes UV
- 2. 1g GelMa 10% + 0,001g photoinitiator 20 minutes UV
- 3. 1g GelMa 10% + 0,0005g photoinitiator 10 minutes UV
- 4. 1g GelMa 10% + 0,0005g photoinitiator 20 minutes UV

Specific surface area

- 1. 1g GelMa 10% + 0,001g photoinitiator 10 minutes UV
- 2. 1g GelMa 10% + 0,001g photoinitiator 20 minutes UV
- 3. 1g GelMa 10% + 0,0005g photoinitiator 10 minutes UV
- 4. 1g GelMa 10% + 0,0005g photoinitiator 20 minutes UV

Nº	BET	ВЈН		
	$S, m^2/g$	$S, m^2/g$	V, cc/g	D _{pore} , nm
1	109,66	96,48	0,13	4,29
2	44,28	54,77	0,07	4,26
3	0	29,93	0,04	3,19
4	564,94	208,9	0,27	3,51

Biological properties of membranes

Concentration dynamics LY (endothelial cells on scaffolds)

Concentration dynamics LY (astrocytes on scaffolds)

^{2. 1}g GelMa 10% + 0,001g photoinitiator 20 minutes UV

^{. 1}g GelMa 10% + 0,0005g photoinitiator 10 minutes UV

^{4. 1}g GelMa 10% + 0,0005g photoinitiator 20 minutes UV

Conclusions

- synthesized modified gelatin
- obtained and characterized membranes differing in the degree of crosslinking
- studied biological properties on 3 types of cells. Membrane 1 showed the best results.

Thanks for your attention!

belyaeva@scamt-itmo.ru

St. Petersburg, 2020