ECCS 2020 **1st International Electronic Conference on Catalysis Sciences** 10–30 NOVEMBER 2020 | ONLINE

Coke-resistant Rh and Ni catalysts supported on γ -Al₂O₃ and CeO₂ for biogas oxidative steam reforming

<u>Renda S.¹</u>, Ricca A.², Palma V.¹

srenda@unisa.it

¹Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy ² ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-STSN-SGRE, Piazzale Enrico Fermi 1, 80055 Portici NA - Italy

University of Salerno, Italy Department of Industrial Engineering Proceed Lab

Introduction

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Introduction

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

 Study of the biogas oxidative steam reforming (BOSR) reaction in different catalyzed systems

 Research of highly active catalytic formulations which can be easily empolyed in the industrial sector

• Investigation of the **aging stability** of the most promising formulations and evaluation of the **deactivation driving mechanisms**

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Biogas oxidative steam reforming

 $CH_4 + yCO_2 + xH_2O + \alpha O_2 \rightleftharpoons aCO + bCO_2 + cCH_4 + dH_2O + eH_2 + fC_{(s)}$

Active species: Ni, Rh

Supports: Al₂O₃, CeO₂

- Ni: typical active metal in reforming processes cheap and easily available
- Rh: high activity and stability towards POX

> Al₂O₃: typical support in reforming processes

high SSA \rightarrow good dispersion

cheap and easily available

 \succ CeO₂: reduce the coke deposition

Preparation method: wet impregnation

Bimetallic formulations: subsequent impregnations

Sample	Nominal metal loading (wt%)	
	Ni	Rh
10%Ni/Al ₂ O ₃	10	-
5%Ni/Al ₂ O ₃	5	-
0.5%Rh/Al ₂ O ₃	-	0.5
0.5%Rh-5%Ni/Al ₂ O ₃	5	0.5
5%Ni/CeO ₂	5	-
0.5%Rh-5%Ni/CeO ₂	5	0.5

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

<u>Renda S.</u>, Ricca A., Palma V.

Work overview

Experimental plant

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Catalytic activity tests

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Catalytic activity tests

Metal dispersion is a determining factor

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Catalytic activity tests

Rh-Al₂O₃ interactions are effective towards the reactants activation

Rh-Ni interactions are different on Al₂O₃ and on CeO₂, in addition to the worse dispersion

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Comparison with literature

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

Background

Biogas can be considered as an alternative to natural gas in hydrogen production

Catalysts for biogas reforming suffers of deactivation mainly because of sintering and coke deposition

This work

High metal dispersion ensure higher activity towards BOSR

Ni-Al₂O₃ interactions are not sufficient to ensure the thermal stability of the catalyst

Ni-Rh-Al₂O₃ interactions allow the active species stabilization and resistence to sintering and reduce coke deposition on Rh sites

Ni-CeO₂ interactions ensure the catalyst thermal stability and CeO₂ avoid coke deposition, but the activity is lowered by the worse metal dispersion

Al₂O₃-based formulations offered promising performances if compared to other results in literature

ECCS 2020, Nov. 10-30

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

ECCS 2020 **1st International Electronic** Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE

Thank you for your kind attention!

Simona Renda PhD student

srenda@unisa.it

Coke-resistant Rh and Ni catalysts supported on γ-Al₂O₃ and CeO₂ for biogas oxidative steam reforming

<u>Renda S.</u>, Ricca A., Palma V.

ECCS 2020, Nov. 10-30