

CYTOTOXIC EFFECT OF CHOLESTEROL METABOLITES ON HUMAN COLONIC TUMOR (CACO-2) AND NON-TUMOR (CCD-18CO) CELLS AND THEIR POTENTIAL IMPLICATION IN COLORECTAL CARCINOGENESIS

Mussa Makran Ali, PhD Student

Gabriel López-García, Guadalupe Garcia-Llatas, Reyes Barberá, Amparo Alegría, Antonio Cilla

Nutrition and Food Science Area. Faculty of Pharmacy

University of Valencia, Spain

BIONUTEST research group

INDEX

- Cholesterol metabolism by colonic microbiota
- Cholesterol metabolites and colorectal cancer

MATERIAL AND METHODS

- Coprostanol
- Cholestanol
- Coprostanone
- Cholestenone
- 5-Fluorouracil

- Cytotoxicity of cholesterol metabolites
- Compensatory response
- Cell line response
- CONCLUSIONS

CHOLESTEROL METABOLISM BY COLONIC MICROBIOTA

CHOLESTEROL METABOLISM BY COLONIC MICROBIOTA

INTRODUCTION

Adapted from Cuevas-Tena et al., 2018. Eur J Lipid Sci Technol. 120: 1800054.

CHOLESTEROL METABOLITES AND COLORECTAL CANCER

Metabolite	Conditions	Fecal vs. control (mg/g dry or wet* feces)	Referencia
	CRC	14.2-26.4 <i>vs</i> . 6.8-14.7	[1-4]
Coprostanol	Ulcerative colitis	19.9-26.6 vs. 6.7-12.9	[5,6]
	Adenomatous polyps	19.7 <i>vs</i> . 12.4	[3]
	Western diet <i>vs</i> . rich vegetables	3.7-6.6 <i>vs</i> . 1.2-1.4*	[7, 8]
	CRC	3.1-3.6 <i>vs</i> . 4.2-2.1	[3, 4]
Coprostanone	Ulcerative colitis	3.4 <i>vs</i> . 2	[6]
coprostanone	Adenomatous polyps	4.2 <i>vs</i> . 2.1	[6]
	Western diet <i>vs.</i> rich vegetables	2.1-3.4 <i>vs</i> . 0.2-2 / 0.65 <i>vs</i> . 0.12*	[3, 9]/[8]
Cholestanol	CRC	0.6 <i>vs</i> . 0.4	[10]

Clin Chim Acia. 141:151-68; [5] Reddy et al., 1977. Cancer Res. 37: 1697-701; [6] Reddy & Wynder, 1973. J Natl Cancer Inst. 50: 1437-42; [7] van Faassen et al., 1987. Am J Clin Nutr. 45: 962-7; [8] Hill et al., 1971. Lancet. 297: 95-10; [9] Reddy et al., 1978. Cancer Lett. 4: 217-22; [10] Kanazawa et al., 1996. Cancer. 77: 1701-06.

CHOLESTEROL METABOLITES AND COLORECTAL CANCER

Animal studies

- **[LDL-C]**, **[metabolites]** in feces and No. of **chemoinduced large intestine** tumors in rats with a diet rich in unsaturated fat *vs*. saturated fat [1]
- **Cholestanone** and **cholestenone** —> nuclear aberrations in mice colonic epithelium [2]
- **Cholestenone** —> sister chromatid exchange in mice colonic epithelium [3]
- Incidence of **chemoinduced large intestine** tumors in rats with a diet rich in unsaturated fat + <u>neomycin</u> + cholesterol (*vs.* basal diet) [4]
 - → Inhibitor of intestinal cholesterol absorption

CHOLESTEROL METABOLITES AND COLORECTAL CANCER

Plant sterols lower the risk of CRC

By reducing the biotransformation of cholesterol by the colonic microbiota

Adapted from Cuevas-Tena et al., 2018. Eur J Lipid Sci Technol. 120: 1800054.

OBJECTIVE

To evaluate the cytotoxic activity of the main cholesterol-derived

metabolites (coprostanol, cholestanol, coprostanone, and cholestenone)

at physiologically relevant concentrations on tumoral (Caco-2) and non-

tumoral (CCD-18Co) human colon cells.

CELL CULTURE AND TREATMENT

chemotherapeutic drug for CRC [3]

[1] Cuevas-Tena et al., 2018. Eur J Lipid Sci Technol. 120: 1800054; [2] Pem et al., 2018, Water Research, 132, 222-240; [3] Álvarez-Sala et al., 2018. J Funct Foods. 49: 52-60.

CYTOTOXICITY ASSAY (MTT)

• COPROSTANOL IN CCD-18CO CELLS (NON-TUMORAL)

The * indicates statistically significant differences (p < 0.05) between the treatments and the control. Different uppercase letters (A-B) indicate statistically significant differences (p < 0.05) at different times at the same concentration

COPROSTANOL IN CACO-2 CELLS (TUMORAL)

The * indicates statistically significant differences (p < 0.05) between the treatments and the control

RESULTS

CHOLESTANOL IN CCD-18CO CELLS (NON-TUMORAL)

The * indicates statistically significant differences (p <0.05) between the treatments and the control. Different lowercase letters (a-b) indicate statistically significant differences (p <0.05) at different concentration at the same time

CHOLESTANOL IN CACO-2 CELLS (TUMORAL)

The * indicates statistically significant differences (p < 0.05) between the treatments and the control

COPROSTANONE IN CCD-18CO CELLS (NON-TUMORAL)

The * indicates statistically significant differences (p <0.05) between the treatments and the control. Different lowercase letters (a-b) indicate statistically significant differences (p <0.05) at different concentration at same time. Different uppercase letters (A-B) indicate statistically significant differences (p <0.05) at different times at the same concentration

• COPROSTANONE IN CACO-2 CELLS (TUMORAL)

The * indicates statistically significant differences (p < 0.05) between the treatments and the control. Different lowercase letters (a-b) indicate statistically significant differences (p < 0.05) at different concentration at the same time

CHOLESTENONE IN CCD-18CO CELLS (NON-TUMORAL)

The * indicates statistically significant differences (p <0.05) between the treatments and the control. Different lowercase letters (a-e) indicate statistically significant differences (p <0.05) at different concentrations at the same time. Different uppercase letters (A-B) indicate statistically significant differences (p <0.05) at different times at the same concentration

CHOLESTENONE IN CACO-2 CELLS (TUMORAL)

The * indicates statistically significant differences (p <0.05) between the treatments and the control. Different lowercase letters (a-c) indicate statistically significant differences (p <0.05) at different concentrations at the same time. Different uppercase letters (A-B) indicate statistically significant differences (p <0.05) at different times at the same concentration

• 5-FU (25 μM)

The asterisk indicates statistically significant differences (p <0.05) between the treatments and the control. Different lowercase letters (a-b) indicate statistically significant differences (p <0.05) between the different times for a cell line. Different uppercase letters (A-B) indicate statistically significant differences (p <0.05) between the two cell lines for the same time

• CYTOTOXICITY OF CHOLESTEROL METABOLITES

	_	IC ₅₀ (μM)		
		CCD-18Co	Caco-2	
	24 h	>300 ^{aA}	>300 ^{aA}	
Coprostanol	48 h	>300 ^{aA}	>300 ^{aA}	
	72 h	156 ± 17*cA	>300 ^{aA}	
	24 h	>300 ^{aA}	>300 ^{aA}	
Cholestanol	48 h	>300 ^{aA}	>300 ^{aA}	
	72 h	>300 ^{aB}	>300 ^{aA}	
	24 h	$59 \pm 7^{*aB}$	>300 ^{aA}	
Coprostanone	48 h	$136 \pm 8^{*bB}$	>300 ^{aA}	
	72 h	41 ± 4* ^{cC}	121 ± 7^{bB}	
	24 h	27 ± 1 ^{*aC}	37 ± 4^{aB}	
Cholestenone	48 h	46 ± 3^{bC}	50 ± 3^{bB}	
	72 h	$13 \pm 3^{*cD}$	38 ± 3^{aC}	

The * indicates statistically significant difference (p <0.05) vs. Caco-2 in the same time. Different lowercase letters (a-c) indicate statistically significant differences (p <0.05) at different times for the same metabolite and cell line. Different uppercase letters (A-D) indicate statistically significant differences (p <0.05) in different metabolites for the same time and cell line.

CYTOTOXICITY OF CHOLESTEROL METABOLITES

		_	IC ₅₀ (μM)	
			CCD-18Co	Caco-2
		24 h	>300 ^{aA}	>300 ^{aA}
	Coprostanol	48 h	>300 ^{aA}	>300 ^{aA}
		72 h	156 ± 17*cA	>300 ^{aA}
		24 h	>300 ^{aA}	>300 ^{aA}
	Cholestanol	48 h	>300 ^{aA}	>300 ^{aA}
		72 h	>300 ^{aB}	>300 ^{aA}
		24 h	$59 \pm 7^{*aB}$	>300 ^{aA}
٢	- Coprostanone	48 h	$136 \pm 8^{*bB}$	>300 ^{aA}
The most cytotoxic		72 h	$41 \pm 4^{*cC}$	121 ± 7^{bB}
		24 h	27 ± 1 ^{*aC}	37 ± 4^{aB}
Ĺ	- Cholestenone	48 h	46 ± 3^{bC}	50 ± 3^{bB}
		72 h	$13 \pm 3^{*cD}$	38 ± 3^{aC}

The * indicates statistically significant difference (p <0.05) vs. Caco-2 in the same time. Different lowercase letters (a-c) indicate statistically significant differences (p <0.05) at different times for the same metabolite and cell line. Different uppercase letters (A-D) indicate statistically significant differences (p <0.05) in different metabolites for the same time and cell line.

• CYTOTOXICITY OF CHOLESTEROL METABOLITES

	The	-		IC ₅₀	(μM)	
	rne	most vulnerabl	e ←	CCD-18Co	Caco-2	
			24 h	>300 ^{aA}	>300 ^{aA}	
		Coprostanol	48 h	>300 ^{aA}	>300 ^{aA}	
			72 h	$156 \pm 17^{*cA}$	>300 ^{aA}	
			24 h	>300 ^{aA}	>300 ^{aA}	
		Cholestanol	48 h	>300 ^{aA}	>300 ^{aA}	
			72 h	>300 ^{aB}	>300 ^{aA}	
			24 h	59 ± 7* ^{aB}	>300 ^{aA}	
	Г	Coprostanone	48 h	$136 \pm 8^{*bB}$	>300 ^{aA}	
The most cytotoxic			72 h	$41 \pm 4^{*cC}$	121 ± 7 ^{bB}	
The most cytotoxic			24 h	27 ± 1* ^{aC}	37 ± 4^{aB}	
	L	Cholestenone	48 h	46 ± 3^{bC}	50 ± 3^{bB}	
			72 h	13 ± 3*cD	38 ± 3^{aC}	

The * indicates statistically significant difference (p <0.05) vs. Caco-2 in the same time. Different lowercase letters (a-c) indicate statistically significant differences (p <0.05) at different times for the same metabolite and cell line. Different uppercase letters (A-D) indicate statistically significant differences (p <0.05) in different metabolites for the same time and cell line.

[1] López-García et al., 2019. Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery. 1st ed. 145-165.; [2] Suzuki et al., 1986. Cancer Lett. 33: 307-16; [3] Kaul et al., 1987. Mutagenesis. 2: 441-4.

[1] Cermak et al., 1993. Cancer Res. 53, 5308-5313; [2] Lin et al., 2010. Expert Opin Ther Targets. 14, 45-55.

LIMITATIONS OF STUDY

- Preliminary study —> A greater number of analytical repetitions is needed
- Molecular mechanisms have not been studied → Cell death and cell cycle progression
- Hypothesis on compensatory response and cellular sensitivity without experimental support
 Based

Structural similarity to secondary bile acids (same activity?)

- 1. Metabolites produced by intestinal bacteria from cholesterol, mainly those of a hydrophobic nature (cholestenone and coprostanone), could be involved in colorectal carcinogenesis through their cytotoxic activity.
- 2. Further studies are needed to determine the molecular mechanisms that mediate the cytotoxicity of cholesterol metabolites, and to define the selectivity of this effect.
- 3. The study of pathways involved in the compensatory response is needed, since this could contribute to the development of CRC.

- 1. Metabolites produced by intestinal bacteria from cholesterol, mainly those of a hydrophobic nature (cholestenone and coprostanone), could be involved in colorectal carcinogenesis through their cytotoxic activity.
- 2. Further studies are needed to determine the molecular mechanisms that mediate the cytotoxicity of cholesterol metabolites, and to define the selectivity of this effect.
- 3. The study of pathways involved in the compensatory response is needed, since this could contribute to the development of CRC.

- 1. Metabolites produced by intestinal bacteria from cholesterol, mainly those of a hydrophobic nature (cholestenone and coprostanone), could be involved in colorectal carcinogenesis through their cytotoxic activity.
- 2. Further studies are needed to determine the molecular mechanisms that mediate the cytotoxicity of cholesterol metabolites, and to define the selectivity of this effect.
- 3. The study of pathways involved in the compensatory response is needed, since this could contribute to the development of CRC.

CYTOTOXIC EFFECT OF CHOLESTEROL METABOLITES ON HUMAN COLONIC TUMOR (CACO-2) AND NON-TUMOR (CCD-18CO) CELLS AND THEIR POTENTIAL IMPLICATION IN COLORECTAL CARCINOGENESIS

THANKS FOR YOUR ATTENTION

Mussa Makran Ali (makran@alumni.uv.es)