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Abstract: Materials consisting of a single layer of atoms have many promising applications, due to 

their extraordinary physical properties. These properties, however, depend on the density and kind 

of structural defects present in the perfect 2D crystalline lattice. Electrons with energies falling into 

the allowed band propagate freely in a perfect crystal, but defects act as scattering centers for the 

Bloch waves. We studied the influence of structural defects on the transport properties of a graphene 

lattice by calculating the scattering of electronic wave packets. We compared two methods. i) 

Description of the atomic lattice and the electronic structure of graphene by an atomic 

pseudopotential, then calculation of the Bloch functions and corresponding E(kBloch) energies. The 

defect is represented by a local potential, then we compute the scattering by the time development 

of a wave packet composed of the Bloch waves. ii) If we he incorporate the E(kBloch) dispersion 

relation directly into the kinetic energy operator, however, we don’t need to calculate the wave 

functions, thus we also don’t need the graphene potential. The dispersion relation can be a simple 

tight-binding (TB) dispersion relation, but for a more accurate representation of the electronic 

structure, we can utilize E(kBloch) dispersion relations from an ab-initio DFT calculation. 
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1. Introduction 

In order to design nanoelectronic devices, it is important to precisely understand the dynamics 

of electrons in these structures. Wave packet dynamics (WPD) [1] can simulate electronic dynamics 

and transport phenomena at the nanoscale and is capable of calculating realistic models containing 

several hundred atoms already on a personal computer. The physical system is described by a 

Hamiltonian and the initial conditions are given by an initial wave function. Solution of the time 

dependent Schrödinger equation then yields the 𝜓(𝑟, 𝑡) time dependent wave function and its time-

energy Fourier transform gives the 𝜓(𝑟, 𝐸)energy dependent wave function. In the one particle 

approximation we calculate only a one (quasi)particle three-dimensional (3D) wave function instead 

of the 3N dimensional many body wave function and the details of the many body interaction are 

coded into the Hamilton operator. This can be done by building a sufficient 𝑉(𝑟)one particle 

pseudopotential. During the past two decades we have been performing WPD calculations [2]–[4] for 

many sp2 Carbon nanosystems, by using a variationally calculated local Carbon one electron 

pseudopotential [5]. This potential has two major advantages: i) it brings the specific electronic 

dynamics (linear dispersion near the K points for electrons near the Fermi energy (EF), trigonal 

warping for hot electrons, etc) of the  bands [6] into the WPD calculation and ii) makes it possible to 

handle localized defects. We were able to exploit this feature of the pseudopotential in calculating 

the transport properties of different 0D and 1D graphene defects [3,7]. 
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The WPD calculation has two input quantities: i) the Hamiltonian and ii) the 𝜓0(𝑟) = 𝜓(𝑟, 𝑡 = 0) 

initial state. In our former calculations 𝜓0(𝑟) was a simple 3D Gaussian wave packet (WP), but this 

made it necessary to start the initial WP from a region of space, where 𝑉(𝑟) = 0, or at least constant, 

and the WP had to be injected from this region into the nanosystem through a simulated interface 

layer. This, however, made it difficult to create a WP with pre-determined initial spectrum on the 

nanosystem, because the interface layer can considerably distort the spectrum. 

We can, however, build a tailor-made initial WP on the nanosystem if we construct the WP as a 

superposition of Bloch states. This is what we present in Sec. 2 of this work and then these precisely 

determined WPs were used to study scattering in defect states. 

In Sec. 3 we introduce and apply an alternative WPD technique, which has the advantage that it 

completely circumvents the need to calculate a pseudopotential. We work out the time evolution of 

the WP directly from the 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) dispersion relation. Formerly we applied [2] this method for 

studying the WPD on a graphene and a MoS2 single layer and now we test it for graphene structural 

defects. 

2. Bloch function wave packet construction, time evolution, and scattering in graphene 

For any 𝑉(𝑟) potential which is periodic in space, the solutions of the stationary Schrödinger 

equation have the form of 𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) = 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ)𝑒𝑖�⃗⃗�𝐵𝑙𝑜𝑐ℎ𝑟 , where 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ)  is a periodic 

function and �⃗⃗�𝐵𝑙𝑜𝑐ℎ is the Bloch wave vector. These 𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) functions are called Bloch functions. 

Bloch functions and the corresponding 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) energies can be easily computed numerically for 

any periodic potential, with the Fourier transformed form of the Schrödinger equation. Figure 1. 

shows some characteristic Bloch functions for the graphene surface, computed using the graphene 

pseudopotential [5]. 

Next, we constructed localized wave packets as a superposition of Bloch states. It is possible to 

build maximally localized Wannier functions [9], [10], [11] by a carefully chosen superposition, but 

those superpositions span for the whole Brillouin zone. If we want to have a fairly narrow spectral 

distribution together with a sufficiently narrow spatial distribution, we can use a superposition with 

a simple Gaussian amplitude function 𝑎(�⃗⃗�): 

 

𝜙(𝑟) = ∫ 𝑒
−

|�⃗⃗�−�⃗⃗�0|
2

4∆𝑘2 𝑒𝑖𝑟0�⃗⃗�  𝜑(𝑟, �⃗⃗�)𝑑3�⃗⃗� (1) 

where we wrote �⃗⃗� for �⃗⃗�𝐵𝑙𝑜𝑐ℎ  in this formula for brevity (see Appendix A), �⃗⃗�0 is the momentum 

space, 𝑟0 is the direct space initial position of the Gaussian and ∆𝑘 is its momentum width. Figure 

2a shows a such constructed WP, localized in its 𝑦 coordinate in direct space and its spectrum is 

concentrated on one of the graphene 𝐾  points, Fig 2g is the plot of the real part of the 𝑎(�⃗⃗�) 

amplitude function. It is a Gaussian multiplied with a plane wave. 

Figures 2a-c show the time evolution of this Bloch WP for an unperturbed graphene lattice. This 

was calculated by numerically solving the time dependent Schrödinger equation with the split-

operator FFT method [12], [13], [14] using the �̂� = 𝐾𝑓𝑟𝑒𝑒 + �̂� Hamilton operator, where 𝐾𝑓𝑟𝑒𝑒  is the 

free space kinetic energy operator and �̂� = 𝑉(𝑟)  is the graphene pseudopotential [5]. This time 

evolution – i.e. that for the infinite lattice – can also be analytically calculated by inserting the 

𝐸𝑥𝑝[−𝑖𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ)𝑡]  time propagator into the kernel of Eq.1, where 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ)  is the graphene 

dispersion relation. The WP moves in the −𝑦 direction, because its spectral distribution is centered 

at the lowest K point of the graphene Brillouin zone. The spectral width of the WP is small, 0.1𝛤𝐾̅̅ ̅̅ , 

hence the dispersion relation is still linear, there is only a very small spreading in the time evolution, 

the shape of the WP remains unchanged. 

Figures d-f show the time evolution of the same initial Bloch WP on a graphene lattice with a 

structural defect. We can see that the WP is indeed scattered on the defect and the angular distribution 

of the scattered WP has a hexagonal symmetry. 
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Figure 1. Construction of the graphene Bloch wave functions for different points along the ΓK line in 

the extended Brillouin zone. Left column: 𝑒𝑖�⃗⃗�𝐵𝑙𝑜𝑐ℎ𝑟 . Middle column: 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) . Right column: 

𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ). See Sec.1. for details. Real parts of the wave functions are shown, green is positive, red is 

negative. The graphene lattice is shown by blue lines. The insets in a, d, g, j show the position of �⃗⃗�𝐵𝑙𝑜𝑐ℎ 

(yellow dot) relative to the Brillouin zone. 

3. Band structure governed wave packet dynamics 

In the traditional formulation of the WPD the environment of the moving electron quasiparticle 

(i.e. the crystal and the averaged effect of the other electrons) is incorporated into the potential energy 

operator by the help of a (pseudo)potential, thus the Hamiltonian is �̂� = 𝐾𝑓𝑟𝑒𝑒 + �̂�. In this Section we 

present an alternative formulation, where the effect of the crystal potential and the many-body effects 

are incorporated into the kinetic energy operator, i.e. the Hamiltonian is �̂� = 𝐾 + �̂�𝑓𝑟𝑒𝑒. 
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Figure 2. Time evolution of the probability density of a Bloch function wave packet in the graphene 

pseudopotential. (a,b,c) Without defect. (d,e,f) With defect. (g) Spectral distribution of the Bloch 

function wave packet in the Brillouin zone, only the real part of 𝑎(�⃗⃗�) is shown. The red bar shows 

the reciprocal space width Δ𝑘. (h) Scattering pattern, absolute value of the difference of the WPs 

shown on (c) and (f). The size of the calculation window is 14.48 nm. 

Thus �̂� = �⃗⃗⃗�𝑓𝑟𝑒𝑒 , because the potential energy of a free particle is zero, �̂�𝑓𝑟𝑒𝑒 = 0. All of crystal 

structure and electronic structure effects are taken care of in band structure calculations which yield 

a dispersion relation 𝐸𝑛(�⃗⃗�𝐵𝑙𝑜𝑐ℎ), where is the Bloch wave vector and n is the band index. The kinetic 

energy operator in free space is 𝐾𝑓𝑟𝑒𝑒 =
|�⃗⃗�|

2

2
= 𝐸𝑓𝑟𝑒𝑒(�⃗⃗�) in momentum representation, where 𝐸𝑓𝑟𝑒𝑒(�⃗⃗�) 

is the free space dispersion relation. In our alternative formulation we replace the free space 

dispersion relation with the one describing the dispersion relation of a many electron system in a 

given crystalline material, thus the momentum representation of the kinetic energy operator is 𝐾 =

𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ). We already presented such calculations for perfect 2D crystals, graphene and MoS2 single 

sheets in [2]. Those calculations successfully reproduced the trigonal warping effect and the 

anisotropic WP spreading characteristic of these 2D materials and showed different symmetries of 

the WP spreading, depending on the band structure and the spectral distribution of the initial WP. 

As we emphasized in [2], similar calculations can be easily performed for any crystalline material, 

where the dispersion relation is known. 

In this Section, we combine the two methods, in order to study defects in 2D crystalline 

materials. We describe the (infinite, periodic) crystal by the kinetic energy operator (utilizing the 

dispersion relation of that material) and the structural defect by a local potential. Thus our 

Hamiltonian will become �̂� = 𝐾𝑐𝑟𝑦𝑠𝑡𝑎𝑙 + �̂�𝑑𝑒𝑓𝑒𝑐𝑡 , where the 𝐾𝑐𝑟𝑦𝑠𝑡𝑎𝑙 = 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ)  kinetic energy 

operator describes the electronic structure of the crystal lattice and the �̂�𝑑𝑒𝑓𝑒𝑐𝑡 = 𝑉(𝑟)  potential 

energy operator describes the local defect. 
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Figures 3a-c show the time evolution of a WP for an unperturbed graphene lattice and Figs 3d-f 

is the same time evolution with a local defect. The WPD was calculated by numerically solving the 

time dependent Schrödinger equation with the split-operator FFT method [12], [13], [14]. T spectral 

distribution of the initial WP is a sum of six Gaussians, placed in the six K and K’ points (Fig 3g). 

 

Figure 3. Time evolution of the probability density of a wave packet on the graphene surface with- 

and without defect. The band structure of the perfect crystal is incorporated into the kinetic energy 

operator, hence the potential is everywhere zero, except in the defect region. (a,b,c) Without defect. 

(d,e,f) With defect. The defect is shown by a blue spot. (g) Spectral distribution of the initial wave 

packet in the Brillouin zone (absolute value) is shown by red circles in the K and K’ points, 

superimposed on the graphene band structure. The radius of the red circles is Δ𝑘/2, the intensity of 

the red color is proportional to the spectral weight at each (�⃗⃗�𝑥, �⃗⃗�𝑦) points. (h) Scattering pattern, 

absolute value of the difference of the WPs shown on (c) and (f). The size of the calculation window 

is 23.04 nm. 

Several important effects can be seen in these images. Firstly, in the case of the unperturbed 

graphene surface, we can see an anisotropic (hexagonal) spreading of the WP. This is in agreement 

with our earlier calculations [4], where the initial WP was injected onto the graphene surface from an 

STM tip and also with TB-DFT calculations in [15]. Secondly, an atomic scale modulation is present 

on the WP. This is interesting, because this calculation does not directly have the atomic lattice as 

input. The atomic structure is, however, implicitly represented by the graphene dispersion relation. 

Thirdly, when the WP hits the local potential, it is scattered on it. Though the local potential is 

cylindrically symmetric (isotropic), the scattered WP has a hexagonal symmetry (anisotropic) – as is 

best seen on the difference image in Fig 3h. This effect, which can be termed as a “generalized 

Huygens principle” is caused by the anisotropic nature of the graphene dispersion relation. 
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4. Conclusions 

We presented an extension to the wave packet dynamical method, where the initial wave packet 

is constructed from the numerically calculated Bloch states of the pseudopotential representing the 

physical system. This method makes it possible to fine-tune the spectral distribution of the initial 

wave packet and thus investigate the details of the nanoscale transport phenomena for different 

scenarios. The method was then applied for a structural defect on a graphene surface where we 

studied the scattering of the Bloch function wave packet on the local defect. A hexagonal scattering 

pattern was seen. 

Then we went on to calculate the wave packet time evolution by a method, where the properties 

of the infinite crystal (its atomic- and electronic structure) is coded into the kinetic energy operator 

and the properties of the local defect is represented by a local potential. An anisotropic (hexagonal) 

scattering pattern emerges even for an isotropic (Gaussian) potential, because of the anisotropic 

nature of the band structure. The advantage of the method is that it does not require the calculation 

of a pseudopotential. The only input necessary to represent the infinite crystal is its 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) band 

structure, available from, for example, a DFT calculation. 

Supplementary Materials: The following are available online at http://www.xxxxx, Video S1: Time development 

of a wave packet on the graphene surface. Video S2: Scattering of a wave packet on a graphene defect. 
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Appendix A 

In this paper the kinetic energy operator is defined in momentum space and the potential energy 

operator is defined in direct space. This is well suited to the calculation method, because we solve the 

time dependent Schrödinger equation by the split-time FFT method, where in each time step ∆𝑡 we 

change the wave function from the direct- to the reciprocal space and back by Fourier transforms. We 

have to emphasize that the term “Fourier transform” is used in two distinct meanings in this context. 

The split-time FFT method uses the Fast Fourier Transform (FFT), which decomposes the wave 

function into plane waves, represented by �⃗⃗� wave vectors. In a crystalline material, described by a 

periodic potential, �⃗⃗�  is not a good quantum number, but the crystal momentum �⃗⃗�𝐵𝑙𝑜𝑐ℎ  is. The 

momentum wave function 𝜑(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) can be computed from the direct space wave function 𝜑(𝑟) by 

applying a generalized Fourier transform, where the basis functions are the Bloch waves 

corresponding to the 𝑉(𝑟) potential. 
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