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Abstract: Electromagnetic induction testing is effective non-destructive testing (NDT) method not 

only for electrical conductive materials but also for non-electrical conductive materials. In the 

previous our research, electromagnetic induction testing method by using the DFL (Driver Field 

Lens) was proposed to inspect cracks in non-electrical conductive materials. In this research, the 

applicability of the autoencoder to the data processing for the data measured by the proposed 

method was examined. In particular, it was examined to separate the data on the specimen with the 

crack in the particular orientation (severe crack) from the data with both the other orientation (non-

severe crack) or the without cracks. It was found that severe crack data and others cannot be divided 

into two simply by determining a threshold. However, the autoencoder can be utilized for the first 

screening of the obtained data to separate non-severe crack or without crack data from the data 

which include the severe crack data (non-severe crack, severe crack and without crack data). In 

general, the number of non-severe crack or without crack-data is often large compared to the 

number of severe crack-data. Therefore, the proposed first screening method using autoencoder can 

be useful when conducting the inspection by the electromagnetic induction testing method with 

the DFL. 
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1. Introduction 

Eddy current testing (ECT) is widely used for the inspection of electrical conductive materials in 

engineering field. For example, ECT is used for the inspection of heat transfer pipes of heat 

exchangers [1]. In general, ECT uses kHz range AC current to inspect high-electrical conductive 

materials, although, a few MHz AC current is used when low-electrical conductive materials, such 

as carbon fiber reinforced plastics, are inspected [2]. Furthermore, ECT becomes applicable to even 

non-electrical conductive materials by using much higher frequency. When the inspection target is 

non-electrical conductive materials, displacement current becomes the key parameter to detect a 

crack instead of eddy current and the NDT method is called as electromagnetic induction testing 

instead of ECT. 

Previous researches showed the effectiveness for electromagnetic induction testing to inspect 

non-electrical conductive materials. Mizukami et al. reported that the method was able to detect the 
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crack and local thinning in GFRP [3]. Gäbler et al. showed the method was able to detect poor curing 

for resin [4]. 

The severity of cracks changes depending on the relationship between the orientation of the 

crack and the direction of the principal stress. Though, in the previous our research, we proposed the 

new method to use rotating DFL (Driver Field Lens) during the inspection to determine crack 

orientation to separate severe cracks from non-severe cracks. 

The details of the method will be explained in the next chapter, but the output of the pickup coil 

changes depending on the relationship between the DFL angle and the crack orientation. However, 

high skill is required to judge the presence of cracks and estimate the orientation of the crack from 

output of pickup coil as the output changes in complicated manner with the DFL angle. 

An autoencoder, one of the unsupervised learning methods in artificial neural network (ANN), 

is said to be used for anomaly detection [5]. In this study, the applicability of an autoencoder to solve 

above problem is examined. 

2. Methods 

2.1. Training data and evaluation data 

Experimental setup is shown in Fig. 1. Training data and evaluation data were prepared by using 

this setup. This experimental setup is the same as the setup used in the previous research which 

demonstrated the effectiveness to evaluate permittivity [3]. In this research, sound GFRP plates and 

GFRP plates with cracks of various widths (1, 3 and 5 mm) and length (5, 10, 15 and 25 mm) were 

prepared. The Driver coil and the pickup coil were set above the specimen. Lift-off (distance between 

specimen surface and coils) of both coils was controlled to 1.5 mm. The 1.0 mm thick DFL was inserted 

between specimen and the coils. The DFL is rectangular coil made of copper tape which length and 

width are 60 mm and 15 mm respectively. The DFL is used to confine the magnetic field generated 

by the driver coil, and to control the magnetic field around the inspection area. Function generator 

(NI-PXI-5421, National Instruments) was connected to the driver coil and AC voltage with a 

maximum voltage of 100 mV and a frequency of 6 MHz was applied to the driver coil which was set 

above the specimen. Displacement current was induced by the driver coil and the change of the 

magnetic field was measured by the pickup coil and digitized by A/D converter (PicoScope 5244A, 

Pico Technology). The converter was connected to PC and the obtained data was analyzed by the 

software (LabVIEW 2018, National Instruments). As shown in Fig. 1 (a), origin of coordinates was 

defined at the center of the specimen. The driver coil, pickup coil and DFL were scanned along x-axis 

while keeping them at the same distance from x = −53 mm to x = 47 mm. At each position, the DFL 

was rotated from 0 to 180 degrees with 15 degrees step. The definition of the DFL angle is shown in 

Fig. 1 (b). By rotating the rectangular DFL, the displacement current field changes depending on the 

relationship between the direction of the DFL and the direction of the crack. 
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Figure 1. Schematic of experimental setup. (a) Over view of the experimental setup; (b) the definition 

of angle and position for the DFL. 

At every DFL angle at each x-position, the both the input data to the driver coil and the output 

data from the pickup coil were measured 30 times, and the average values were recorded separately 

as the measured values at that DFL angle of that x-position. By scanning the coil pair from x = −53 

mm to 47 mm, 23 × 2 data were obtained for each DFL angle for each specimen. In this study, the 

output data when the DFL angle matches with the crack angle is used as normal data for the 

autoencoder. Since the crack orientations of the cracked GFRP plates used in this study are all 90 

degrees, the data when the DFL is 90 degrees is used as the normal data and used for training the 

autoencoder. Table 1 shows specifications of the specimens used for acquiring normal data for the 

autoencoder. Table 2 and 3 show specifications of the specimens used for acquiring anomaly data. 

The normal data and the anomaly data were combined and used as evaluation data for the 

autoencoder. The training data should not be included for the evaluation data if an accurate analysis 

is to be performed, but due to the small number of the data, we decided to use it this time. 

Table 1. Specifications of the specimens 

used for acquiring normal data for the 

autoencoder. 

Table 2. Specifications of the specimens 

used for acquiring anomly data. 

 

 

 

Table 3. Specifications of the specimens used for acquiring anomly data. 
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2.2. Autoencoder 

Figure 2 shows structure of the autoencoder used in this study. The programming was 

performed by using graphical neural network application (Neural Network Console, SONY). The 

upper module in the figure is the autoencoder and the bottom is module for calculating RMS error 

between input data and decoded data. In this autoencoder, the number of max epoch and bath size 

was set 1000 and 10 respectively. 

At the upper module in Fig. 2, Input data (23 × 2) was compressed to 40 at the Affin layer and 

activated by the Tanh layer. The output from Tanh layer was dimensionally reduction data of input 

data. Then, these data were decoded by Affin layer and Tanh layer. The SquaredError layer was the 

loss function. During the training of the autoencoder, the weights in the ANN are optimized as the 

loss (the mean squared error between output data and decoded data) becomes minimize. Dropout 

layer was set after the input layer to improve the efficiency and accuracy for the training. 

At the bottom module in Fig. 2, difference between Input data and decoded data were calculated 

at Sub2 layer. Root mean squared errors of the difference were calculated by PowScalar and Mean 

layers (23 × 2 ⇒ 1 × 2) and the mean for the errors was calculated at the Mean layer (1 × 2 ⇒ 1). 

Mulscaler layer was added at the end to disable the loss function (SquaredError). This is just an 

NNC’s specific expression and will not be explained in detail here. 

 

Figure 2. Schematic of the constructed autoencoder. The upper module is autoencoder and the bottom 

module is for calculating the difference between input data and decoded data. 

3. Results and discussion 

Both the normal data and the anomaly data explained in 2. 1 are put into the trained autoencoder. 

The root mean squared error between input data and decoded data (output from the autoencoder) 

was calculated. The histogram of the errors is shown in Fig. 3. The horizontal axis shows the error 

and the vertical axis shows the frequency of each error. The error in Fig. 3 are multiplied by 1000 as 

the original errors are quite small. The blue bar shows the frequency for the normal data when the 

angles of the DFL matches to that of crack. The red shows for the anomaly data when the angle does 

not match to the angle of a crack or when the crack does not exist. 

As shown in the figure, the average error for the normal data is small, while the error for the  

anomaly data is large. As the error for the anomaly data is widely distributed and the error of some 

data is the same range as those for the normal data, normal data and anomaly data cannot be divided 

into two simply by determining a threshold. However, as average error and variation of the normal 

data are small, it is possible to separate the data not including normal data from the data including 

normal data by setting an appropriate threshold value. Though, the method can be utilized for the 

first screening of the obtained data to separate the data which took at the condition when the DFL 

angle is different from crack orientation (anomaly data: non-severe crack data + without crack data) 

from the data which include the data when the DFL angle is same as crack orientation (normal data 

+ anomaly data: severe crack data + non-severe crack data + without crack data). In general, the 

number of non-severe crack-data or without crack-data is often large compared to the number of 

severe crack-data. Therefore, the first screening method by the proposed method using autoencoder 

can be useful when conducting the inspection by the electromagnetic induction testing method with 

the DFL. 
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Figure 3. Histogram for mean squared value for the DFL angle = 90 degrees and the DFL angle ≠ 90 

degrees. 

4. Conclusions 

In this research, the applicability of an autoencoder to separate the data for the crack with the 

particular orientation (severe crack) from those with other orientation (non-severe crack) and without 

cracks was examined. The data was obtained by using the electromagnetic induction testing with the 

DFL for GFRP specimens without cracks and with cracks of various widths, lengths and orientations.  

It was found that severe crack data and the data for the non-severe crack and without crack 

cannot be divided into two simply by determining a threshold. However, the autoencoder can be 

utilized for the first screening of the obtained data to separate non-severe crack or without crack data 

from the data which include the severe crack data by determining an appropriate threshold. 
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