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Abstract: In this paper, we establish a graph imaging technique to manifest local stabilization within
atomic systems of multi-levels. Specifically, we address the interrelation between local stabilization
and image entropy. As an example, we consider the mutual interaction of two-pair of pulses
propagation in a double-Λ configuration as a dynamical graph-model with four nodes. The dynamic
transition-matrix describes the connectivity matrix in the static graph-modal. It is to be emphasized
that the graph and its image have the same transition matrix. Mainly, the graph-model exposes the
stabilization in terms of the singular-value decomposition of energies for the transition matrix. That
is, and irrespective of the structure of the transition matrix. The image-model of the graph displays
the details of the matrix structure in terms of rows and columns probabilities. Therefore, it will enable
us to study conditional probabilities and mutual information inherent in the network of the graph.
Furthermore, the graph imaging provides the main row/column contribution to the transition-matrix
in terms of image entropy. Our results show that image entropy exposes spatial dependence which is
irrelevant to graph entropy.
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1. Introduction

Quantum graphs are often implemented to model and simulate quantum systems in nuclear,
molecular, and atomic physics [1–4]. The graph structure is basically composed of nodes (vertices) and
links (edges), and a connectivity matrix that describes the strength of links between nodes. The nature
of vertices and edges of the graph strongly dependent on the system considered [2–5]. Molecular
quantum-graph consists of a large number of vertices. As an example, Rawlinson considered 120 nodes
for the quantum graph to describe the rovibrational states of protonated methane molecular ion [2].
In such a quantum graph, the vertices correspond to energy minima on the potential energy surface of
the compound system, and the links represent low-energy paths between vertices. In computational
neuroscience context, it is demonstrated how the brain network represented by a graph [5]. The nodes
in the brain-graph correspond to a set of brain regions which perform specific tasks, and edges
correspond to functional connections. The connectivity matrix describes connections of different
regions of the human brain in the brain-graph model. Graphs are classified into static and dynamic.
Dynamic graphs attributed its time dependence due to the inclusion of nodes [6] or the fluctuation of
the links in time. Wong considered dynamic graphs as a continuous-time quantum walks [7]. There is
progress in the subject of graphs and image processing in different fields. In this short communication,
we are briefly mentioning some of these efforts. Recently, Drinko et al. reported that quantum graphs
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could be used to construct quantum devices [8]. Furthermore, a variety of signal processing techniques
on graphs and networks has been discussed in [9]. Finally, image processing becomes a powerful
diagnostic tool in medicine and biology [10].

Recently, we have introduced a dynamical-graph-model (DGM) to simulate short pulses
propagation in multilevel atomic media [4]. In that model-graph, nodes are represented by atomic
states of hyperfine structure (hf) associated with the D1-line in 87Rb vapor. The transition matrix
is comprised of the density matrix components (DMC) of different ranks that are accessible to the
atomic system. Furthermore, the transition matrix is described by Maxwell fields coupling the hf
states. The spatiotemporal behavior is given in terms of the Bloch equations for the density matrix
and the reduced Maxwell field equations. We have realized the graph with four nodes in different
images. By which we mean different realizations of the two-dimensional transition-matrix connecting
the nodes of the graph [11].

Throughout our analysis of the graph-model for the atomic structure, we mainly characterize
the graph-model using mutual information (MI) inherent in the graph network [12] and references
therein. We compare the spatial-dependence of mutual information against results of spatial-scattering
of light from pulses in the course of its propagation. That is to have a realistic graph-model describing
the atomic structure. Thus, we may able to interpret the mutual-information correlations. Therefore,
the statistical significance of mutual information in light scattering is tested. Recently, the statistical
significance of mutual information between a galaxy and its large environment has been reported [13].
In the present communication, we shall be interested in the total light scattered by pulses. Therefore
we shall not be intended to deal with the angular distribution of the mutual information.

This paper displays the structure of the transition-matrix in terms of transient Bloch-metrics. This
is a simple description which can be generally realized without invoking the irreducible tensorial
set of the density matrix (ITSDM) [14]. The ITSDM reflects all the accessible information to the
atomic system. We have provided two irreducible bases for describing the atomic structure under
hyperfine structure [15,16]. The elements of the connectivity matrix are enrichment through different
multipole connections of coherence as well as looping and self-looping of the nodes. Ignoring ITSDM,
the dimension of the product space is highly reduced. However, we cannot write DMC of third and
fourth rank due to the lack of implicit rank dependence. This paper introduces new dependence of the
transition matrix on the Bloch-metrics with 6 links. In such a simple structure which ignores ITSDM,
there are ten DMC, corresponding to 6 links and four populations as loops. Alternatively, in this
paper, the links are governed by the space-time evolution of the Maxwell-Bloch equations (MBE) with
28 components.

2. The Atomic System

The atomic scheme addressed in this paper is depicted in Figure 1. It shows hyperfine states and
the Rabi frequencies as Ωij, where i = 3, 4 and j = 1, 2. The state of the dressed atom is described
by the Liouville-von Neumann type equation [15]. We shall make use of relative units. The relative
retarded time in a frame moving with the pulse is τ = γ(t− z/c).
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Figure 1. Energy level diagram of 87Rb D1-line including hyperfine structure. The Rabi frequencies Ωij

couple the dipole allowed transition |Fi〉 ⇔ |Fj〉, where α and β denote the level label with i = {3, 4},
and j = {1, 2}, respectively. The number F denotes the total angular momentum quantum number
associated with the hf level.

The dimensionless spatial variable is given as ζ = α
′
(z + ct). Where t is the time, c is the velocity

of light, z is the spatial variable, and α
′

is the absorption coefficient of one of the pulses at the injection
point. The atom-field coupling v is defined as v = drE

2
√

3h̄
, where dr is the reduced dipole moment of

the optical transition and E is the electric field amplitude. The Rabi frequency is related to atom-field
coupling by the relation: Ω =

√
8v. The relative atom-field coupling becomes v = v/γ, and γ is

the spontaneous decay rate of the atomic excited state P1/2. We have 28 density matrix components

(DMC) ρ
(Fm)
αβ associated with the D1-line taking into account the hf structure. The labels α and β take

values from 1 to 4. The labels F and m denote the tensor rank, and the magnetic quantum number,
respectively. The DMC of the atomic polarizations are represented by ρ

(1m)
13 , ρ

(1m)
14 , ρ

(1m)
23 , and ρ

(1m)
24 .

The magnetic quantum number m = 0, as we consider linear polarization. We are interested in the
resonant pulse propagation. We shall assume a t2-Gaussian shape for the injected pulse’s envelope
in the form v(t) = 64

√
2πv0/27(t/Tp)2 exp[−8/9π(t/Tp)2], where v0 is the mean amplitude of the

pulse, and Tp its time duration. The reduced Maxwell-field equations in a frame moving with the
pulse can be written as

∂v13(ζ, τ)/∂ζ = −ρ
(10)
13 (ζ, τ), ∂v14(ζ, τ)/∂ζ = ρ

(10)
14 (ζ, τ),

∂v23(ζ, τ)/∂ζ = −ρ
(10)
23 (ζ, τ), ∂v24(ζ, τ)/∂ζ = ρ

(10)
24 (ζ, τ).

(1)

In the following, we describe a graph imaging of the multilevel structure considered. For a
detailed description of the irreducible tensorial sets describing the atomic system, and the Maxwell
Bloch equations, please see our recent communication [17].

3. Graph Imaging

Recently, we have presented the transition matrix associated with the graph of the hf scheme
depicted in Figure 1. The transition matrix is composed of atomic as well as the field contributions.
The atomic contributions are density matrix components which are maximally accessible to the D1-line.
The DMC is arranged into different irreducible tensorial sets which allowed by dipole and quadrupole
transitions. The field contribution to the transition matrix is mainly attributed to the dipole allowed
transitions only. According to the SVD-technique, the system can be characterized by its leading
eigenvalues. Alternatively, in this communication, we shall pay attention to different types of transition
matrices. The proposed transition matrix is constructed from nodes and links. The nodes represent the
atomic energy state. While the links represent the Bloch-metrics associated with each transition, dipole
or quadrupole allowed. These are positive quantities, and no need for SVD to obtain positive values for
the eigenvalues. Figure 2 presents an image structure with four nodes. The figure shows the diamond
structure with closed-loop. The diagonals connected by dipole-allowed transitions. We are interested
only in resonant interaction of the four pulses with the double-Λ atomic medium. The steady state
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analysis of laser phases in the � configuration of electromagnetically-induced transparency has been
addressed in [18].

1

3 2

4

S41
2

S32
2

S 1
22

S 1
32

S 2
42S 3

42

Figure 2. Complete graph with four nodes and six edges. The edges are formed by dipole allowed and
forbidden transitions. S2

ij represents the Bloch-metric associated with the transition |i〉 ↔ |j〉.

The image in Figure 2, shows that there are two links which are attributed to dipole forbidden
transitions. Let us write the transition matrix as

M1(t; z) =
(

S2
13(t; z) S2

32(t; z) S2
24(t; z) S2

41(t; z)
)

, (2)

where S2
ij(t; z) represents the Bloch-metric associated with the transition |j〉 ↔ |i〉. The image M1(t; z)

presents the transition matrix as composed from dipole transitions only. The brown links in Figure 2 are
omitted. However, one can draw the closed-loop diamond-structure with dipole allowed transitions
presenting links. We study the transition matrix M1(t; z) at some location point in space z and at
different time distributions. This reduces the dimension of the matrix M1(t; z) to be of the length of the
interaction time considered. The rows of the matrix M1(t; z) cannot be exchanged due to the direction
of the arrow of time. So, the influence of the permutation entropy is highly reduced. The permutations
are only along with the columns of the transition matrix. By constructing the Bloch-metrics, one
can write

S2
13(t; z) = 1

2 (ρ
(00)
11 (t; z)− ρ

(00)
33 (t; z))2 + (ρ

(1m)
13 (t; z))2 + (ρ

(1m)
31 (t; z))2,

S2
14(t; z) = 5

8 (
√

3/5ρ
(00)
44 (t; z)− ρ

(00)
11 (t; z))2 + (ρ

(1m)
14 (t; z))2 + (ρ

(1m)
41 (t; z))2,

S2
14(t; z) = 3

8 (
√

5/3ρ
(00)
33 (t; z)− ρ

(00)
22 (t; z))2 + (ρ

(1m)
23 (t; z))2 + (ρ

(1m)
32 (t; z))2,

S2
24(t; z) = 1

2 (ρ
(00)
44 (t; z)− ρ

(00)
22 (t; z))2 + (ρ

(1m)
24 (t; z))2 + (ρ

(1m)
42 (t; z))2.

(3)

The transition matrix M2(t; z) comprises from the primed components as

M2(t; z) =
(
′S2

13(t; z) ′S2
32(t; z) ′S2

24(t; z) ′S2
41(t; z)

)
. (4)

For such a case, the Bloch-metrics become

′S2
13(t; z) = (ρ

(00)
11 (t; z))2 + (ρ

(00)
33 (t; z))2 + (ρ

(1m)
13 (t; z))2 + (ρ

(1m)
31 (t; z))2,

′S2
14(t; z) = (ρ

(00)
44 (t; z))2 + (ρ

(00)
11 (t; z))2 + (ρ

(1m)
14 (t; z))2 + (ρ

(1m)
41 (t; z))2,

′S2
23(t; z) = (ρ

(00)
33 (t; z))2 + (ρ

(00)
22 (t; z))2 + (ρ

(1m)
23 (t; z))2 + (ρ

(1m)
32 (t; z))2,

′S2
24(t; z) = (ρ

(00)
44 (t; z))2 + (ρ

(00)
22 (t; z))2 + (ρ

(1m)
24 (t; z))2 + (ρ

(1m)
42 (t; z))2.

(5)
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Let us construct the third transition matrix. It accounts for the full graph which includes
Raman transitions

M3(t; z) =
(
′S2

13(t; z) ′S2
32(t; z) ′S2

24(t; z) ′S2
41(t; z) ′S2

12(t; z) ′S2
34(t; z)

)
. (6)

And, the Bloch-metrics associated with the Raman transitions become

′S2
12(t; z) = (ρ

(00)
11 (t; z))2 + ρ

(00)
22 (t; z))2 + (ρ

(2m)
12 (t; z))2 + (ρ

(2m)
21 (t; z))2,

′S2
34(t; z) = (ρ

(00)
33 (t; z))2 + (ρ

(00)
44 (t; z))2 + (ρ

(2m)
34 (t; z))2 + (ρ

(2m)
43 (t; z))2.

(7)

4. Image Entropy

In this section, we provide the mathematical formalism for image entropy. We introduced the
transition matrix M(t) associated with a model graph representing the hyperfine structure. In what
follows, we aim to describe the procedure to obtain image entropy [19]. Let us note that our transition
matrix is not symmetric. The first step is to normalize the transition matrix M(t; z), such that

Mαβ(t; z)←
Mαβ(t; z)

∑αβ Mαβ(t; z)
. (8)

Hence, we can define:

A. The probability, pα(t; z), for the node to be connected,
B. Shannon entropy, Srow(t; z), for rows in the transition matrix M(t; z),
C. Conditional entropy, Scolumn|row(t; z), for column nodes given row nodes,
D. Mutual information I(t; z) gained through the network,

I(M(t; z)) = ∑
αβ

Mαβ(t; z) log2[Mαβ(t; z)/pα(t; z)pβ(t; z)]. (9)

5. Numerical Results

In Section 4, we have presented an alternative representation for the transition matrix. The present
representation describes the graph of the multilevel structure in terms of nodes and bonds connecting
the nodes. We have facilitated different classes of images (trees) for the graph model. The bonds (links
or edges) in our model represent the Bloch-metric for the specific link between nodes. The Bloch-metric
depends on the atomic inversion and the coherence, whether optical or Raman. It is convenient
to account for mutual information. Figure 3 depicts mutual information content in the course of
propagation of the two-pair of pulses considered. The MI exposes a finite number of peaks, which are
localized spatially. Thus MI identifies four bands of spatial resonances in the course of propagation.
The first band comprises of a single-line, whilst other bands have multi-peak structures. The multi-peak
structure within each band signifies the mutual interaction and correlation by the resonant pulses,
in the course of propagation.
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Figure 3. Spatial mutual-information for different transition-matrix. The links are represented by Bloch
metrics between dipole allowed and forbidden transitions. k = 103.

The multi-peak structure of the MI spatial resonance can be compared with the spatial fluorescence
imaging based upon the scattered light at different location depths in the atomic medium. We analyzed
the Poynting energy for light scattering associated with a dual-color excitation of the sodium atom in
multilevel atom [20]. Here we intended to describe scattering in terms of cross-sections. The spatial
and total cross-section for light scattering is given as

σ(z) =
γ
∫
(n3(t; z) + n4(t; z))dt

N0
, (10)

where N0 denotes the average number of photons incident on a unit area. The fraction of π polarized
scattered photons

σπ(z) =
γ
∫
(n3(t; z) + n4(t; z))dt

3N0
. (11)

Figure 4 shows the spatial-dependence of the relative cross-section. Spatial cross-section and
mutual information expose banded multi-peak structures. The mutual information and cross-section
display a broadened single-line in the first band. The cross-section displays a well-resolved
triplet of lines in the second band. The structure is broadened in mutual information behavior.
Spatial-dependence of mutual information does not show the threshold entropy tendency as exposed by
the graph entropy. Also, it is not restricted to max/min-entropy limitations. However, the row-entropy
of the transition matrix shows that it is bounded from above by Hartley-entropy.
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Figure 4. The spatial cross-section in relative units that is associated with the total light scattering.
The cross-section is normalized to its maximum in course of propagation. k = 103.

6. Discussions

We have facilitated a graph imaging technique to simulate spatiotemporal characteristics of a pair
of two pulses propagation in resonant multilevel atomic media. The transition matrix is constructed
from positive definite quantities, reflecting the strength of the bonds connecting the nodes. We
have found that the Bloch-metric for each two-level atom subsystem is a good measure for nodes
connectivity. Therefore, three types of Bloch-metric connectivity have been investigated. The first one
provides a constrained Bloch-metrics to satisfy the explicit requirements of 2−1∂tTrρ2 is traceless in
regards to the field. The second proposed Bloch-metric-measure is attributed to instantaneous behavior
and more or less geometrical. For both two cases, only we have studied the Bloch-metrics due to dipole
transitions. The third Bloch-metric is a geometrical one and includes both dipole and quadrupole
transitions. The constructed transition-matrices are not symmetrical in respect with permutations of
rows and columns. This enables us to reduce the permutation entropy. The results are insensitive to
permutation of columns as predicted by parallel computations, especially for the first case. Thus, these
transition matrices quantify the image-entropy with respects to its bond-strengths between nodes.

In finial, we have two views for graph and image entropy. The graph-entropy is basically
depended on the eigensystem of the graph correspond to the schematic energy level diagram of the
atom in concern. However, the image entropy solely depends upon positive definite bond connections.
The strength of these bonds measures the connectivity between nodes. With a matrix visualization
for the image, we have construed the mutual information gained in the network. It has been shown
that the mutual information exposes peaks in the course of propagation. The mutual information
peaks show a structure that is irrelevant to the graph-entropy. The information entropy quantifies
spatial resonance as compared with the spatial light scattering. We hope that our technique finds its
application in light storage experiments through image segmentation and information transfer.

Funding: This research received no external funding

Conflicts of Interest: The author declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute HF Hyperfine structure
DGM Dynamical-graph-model DMC Density matrix components
ITSDM Irreducible tensorial set of the density matrix SVD Singular Value Decomposition
MI Mutual Information RMBE Reduced Maxwell-Bloch Equations
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