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Real-world industrial anomaly detection

• The goal of deep anomaly detection is to identify abnormal data by utilizing a deep neural 

network trained by a normal training dataset 

• Industrial visual anomaly detection problems generally distinguish normal and 

abnormal data through small morphological differences, such as crack and stain. 

normal abnormal



Semantic differences VS Morphological differenecs

• Nevertheless, most existing algorithms focused on capturing not morphological features 

but semantic features of normal data. 

Semantic difference Morphological difference



Morphological transformations - Erosion

• Erosion computes the minimum pixel value of image 𝑖 in every neighborhood of 𝑥, 𝑦 , 

coincident with kernel 𝑏, it expected that the size of bright features in 𝑖 will be reduced

𝑖 ⊖ 𝑏 𝑥, 𝑦 = min
𝑠,𝑡 ∈𝑏

𝑖(𝑥 + 𝑠, 𝑦 + 𝑡)

Normal Eroded normal Abnormal Eroded abnormal



Morphological transformations - Dilation

• Dilation computes the maximum pixel value of image 𝑖 in every neighborhood of 𝑥, 𝑦 , 

coincident with kernel 𝑏, it expected that the size of darker features in 𝑖 will be reduced

𝑖 ⊖ 𝑏 𝑥, 𝑦 = m𝑎𝑥
𝑠,𝑡 ∈𝑏

𝑖(𝑥 + 𝑠, 𝑦 + 𝑡)

Normal Dilated normal Abnormal Dilated abnormal



Morphological transformations – Morphological gradient

• To obtain the morphological gradient of an image, dilation and erosion can be used in 

combination with image subtraction. 

𝑖 ⊙ 𝑏 = 𝑖 ⊕ 𝑏 − 𝑖 ⊖ 𝑏

Normal Dilated normal Abnormal Dilated abnormal



The proposed deep anomaly detection

• The proposed deep anomaly detection aims to discriminate the abnormal data using the 

acquired morphological features of normal data in the training procedure.

• Therefore, if a given morphological transformed data generates a high prediction error, it 

can be considered abnormal. 



Objective function

• The proposed algorithm aims to train deep neural network-based morphological features 

in a self-supervised learning manner. 

• To achieve this goal, we propose to train a deep neural network 𝐹 to discriminate the 

morphological transformation types applied to an image that is given to it as input. 

• Specifically, we define a set of 𝑵𝟏 discrete morphological transformations, 𝑵𝟐

discrete values for kernel width, and 𝑵𝟑 discrete values for kernel height. 



Objective function

• We define a set of 𝑁1𝑁2𝑁3 discrete morphological transformations as follows:

𝐺 = 𝑔 . 𝑛1, 𝑛2, 𝑛3 𝑛1=1,𝑛2=1,𝑛3=1
𝑁1,𝑁2,𝑁3 ,

where 𝑔 . 𝑛1, 𝑛2, 𝑛3 denotes that applies to image 𝑖 the morphological transformation 

with multi-class label {𝑛1, 𝑛2, 𝑛3} that produces the transformed image 𝑖𝑛1,𝑛2,𝑛3 =

𝑔(𝑖|𝑛1, 𝑛2, 𝑛3).

• The deep neural network 𝐹 takes an input as transformed image 𝑖𝑛1
∗ ,𝑛2

∗ ,𝑛3
∗

where the label 

{𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗} is unknown to 𝐹. 



Objective function

• The deep neural network 𝐹 takes an input as transformed image 𝑖𝑛1
∗ ,𝑛2

∗ ,𝑛3
∗

where the label 

{𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗} is unknown to 𝐹.

• It produces a probability distribution of softmax response over all possible morphological 

transformations, which is denoted as follows:

𝐹 𝑖𝑛1
∗ ,𝑛2

∗ ,𝑛3
∗
𝜃 = 𝐹𝑛1,𝑛2,𝑛3 𝑖𝑛1

∗ ,𝑛2
∗ ,𝑛3

∗
𝜃

𝑛1=1,𝑛2=1,𝑛3=1

𝑁1,𝑁2,𝑁3
,

where 𝐹𝑛1,𝑛2,𝑛3 𝑖𝑛1
∗ ,𝑛2

∗ ,𝑛3
∗
𝜃 is the predicted probability for morphological transformation 

with {𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗} and 𝜃 denotes the parameters of 𝐹.



Objective function

• Consequently, the  proposed self-supervised objective function to capture morphological 

features of normal data is as follows:
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where 𝐹𝑛1 𝑖𝑛1
∗ ,𝑛2

∗ ,𝑛3
∗
𝜃 , 𝐹𝑛2 𝑖𝑛1

∗ ,𝑛2
∗ ,𝑛3

∗
𝜃 , and 𝐹𝑛3 𝑖𝑛1

∗ ,𝑛2
∗ ,𝑛3

∗
𝜃 denote predicted 

probability for 𝑛1
∗, 𝑛2

∗ , and 𝑛3
∗ , respectively.

• Through the above formulation, we enforce the deep neural networks to learn 

morphological features of normal by predicting both transformation type and kernel size 

simultaneously. 



Experimental results – implementation details

• In the experimental results, there are three types of the proposed method to verify kernel 

size learning’s influence; 

• Type 1: 𝑛1 ∈ 𝐸𝑟𝑜𝑠𝑖𝑜𝑛, 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛, 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 , n2 ∈ 1,28,56 , 𝑛3 ∈ 1,28,56

• Type 2: 𝑛1 ∈ 𝐸𝑟𝑜𝑠𝑖𝑜𝑛, 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛, 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 , n2 ∈ 8,28,56 , 𝑛3 ∈ 8,28,56

• Type 3: 𝑛1 ∈ 𝐸𝑟𝑜𝑠𝑖𝑜𝑛, 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛, 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 , n2 ∈ 1,8,28,56 , 𝑛3 ∈ 1,8,28,56

• PyTorch with RTX 2080Ti 11GB GPU and Intel i7 CPU.



Experimental results

• Comparison of AUROC (area under the receiver operating characteristic, %) performance 

between [1] and the proposed algorithm in MVTec dataset. 

Class bottle cable capsule carpet grid hazelnut leather

[1] 83.10 77.81 75.31 38.12 31.47 67.14 64.10

Ours-type 1 87.86 76.89 77.50 57.22 15.62 68.71 39.67

Ours-type 2 88.41 77.55 69.92 53.97 29.91 62.29 66.58

Ours-type 3 95.16 80.34 73.08 57.91 29.99 68.04 82.88

Class pill screw tile toothbrush transistor wood average

[1] 62.17 27.73 52.13 82.73 88.25 84.30 64.18

Ours-type 1 50.60 28.06 84.70 93.33 77.92 85.44 63.17

Ours-type 2 51.72 46.96 92.71 70.22 84.04 90.96 66.19

Ours-type 3 57.23 61.86 93.58 91.67 83.29 87.37 72.92

[1] Golan, Izhak, and Ran El-Yaniv. "Deep anomaly detection using geometric transformations." Advances in Neural Information

Processing Systems. 2018.



Conclusion

• The proposed method achieves superior performance in deep anomaly detection on 

industrial inspection by training the deep neural network to capture salient morphological 

features of normal data.      

• The proposed algorithm can flexibly adapt to various real-world deep anomaly detection 

problem by choosing the adequate morphological transformation in image processing 

technology. 

• Because the proposed methodology utilizes self-supervised learning, it has low 

computational complexity than other deep anomaly detection methods such as 

reconstruction-based algorithm. 
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