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Abstract: Assessment of forest above ground biomass (AGB) is critical for managing 

forest and understanding the role of forest as source of carbon fluxes. Recently, satellite 

remote sensing products offer the chance to map forest biomass and carbon stock. The 

present study focuses on comparing the potential use of combination of ALOSPALSAR 

and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass 

and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. 

Polarimetric decompositions, texture characteristics and backscatter coefficients of 

ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters 

and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples 

were used to estimate biomass. The overall coefficient (R2) of AGB modelling using 

combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 

0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to 

predict AGB by using GA-RF model performed better than Sentinel-2 data. 

Keywords: above ground biomass; GA-RF; polarimetric decompositions; texture 

characteristics;  

 

1. Introduction 

Forests are the wealth of the community in every country, that’s why these ecosystems 

are becoming more and more popular today. Carbon is converted into living matter by 

the process of photosynthesis and is returned to the atmosphere as carbon dioxide by 

performed reaction over it. Therefore, the forest is considered as the most important 

resource of carbon [1]. For this reason, forest biomass estimate is important in assessing 

the amount of energy in trees and climate change. Biomass is any organic matter - wood, 

products, seaweed, animal waste - that can be used as an energy source. Biomass is our 

oldest resource of energy after the sun [2].The most abundant biomass used worldwide is 

derived from trees or other types of woody plants. Accurate measurement of biomass 

and other biophysical parameters in forests is essential for a better understanding of the 

mailto:negar.tavasoli@ut.ac.ir


The 3rd International Electronic Conference on Geosciences, 7 - 13 December 2020 2 of 17 

global carbon cycle and land surface temperature. In addition, having information on 

biomass is important for managing forest areas, energy resources, detecting land changes 

and forestry [3]. Distribution of biomass at local, regional and global scales reduces 

ambiguity in carbon degradation, understanding the role of carbon in soil, erosion or 

land reclamation, and environmental processing [4]. Biomass measurement has particular 

importance in the planning and management cycle of forestry and environment; it is also 

one of the important and influential elements in the country's economic cycle. Therefore, 

it can be used to prevent excessive and premature destruction of forests. 

Many methods for calculating biomass have been studied, which generally include GIS 

(Geospatial information system), conventional and remote sensing methods [5, 6]. GIS-

based approaches require ancillary data such as land map and forest age to establish an 

indirect relationship for biomass in an area. Estimates of biomass using conventional 

methods include high cost and time constraints[7]. Ground measurements can be used to 

determine the accuracy and precision of biomass estimation using remote sensing 

methods. Due to the difficulty, time, and cost of collecting and measuring biomass 

ground data, most previous research work has focused on biomass above ground level 

using remote sensing method [8].Hence, using remote sensing data is the only 

appropriate way for large areas to be cost effective [9, 10]. Biomass estimation is 

performed using remote sensing based on returned radiation from the plant. Estimation 

of forest biomass requires further studies on vegetation cover using remote sensing [11]. 

Many research has been done to develop models to measure forest biophysical 

parameters using various remote sensing data such as aerial photographs, Multispectral 

images, Hyperspectral imaging, synthetic aperture radar and Lidar data [12, 13]. Biomass 

estimation using optical remote sensing data is usually performed by using the 

correlation between biomass and spectral responses and vegetation indices derived from 

multispectral images [10, 14]. Optical data due to short wavelengths have deficiencies in 

biomass estimation such as cloud cover and signal saturation [15]. Although, optical data  

is still a popular source of information, the use of radar data due to microwave ability to 

penetrate the foliage of plants and estimate the trunk biomass under the foliage covers is 

under development [10, 16]. In this regard, synthetic radar remote sensing has become an 

attractive technology for forest research, especially in areas with frequent cloud cover 

[16]. Previous studies have demonstrated the ability of SAR images to estimate forest 

biophysical parameters, especially AGB [16, 17]. Recent studies on biomass estimation 

using microwave imagery have focused on the relationship between radar backscatter 

and forest biomass [18]. Related to the relationship between L-band backscatter and 

forest biomass, the correlation coefficient varies according to different forest types and 

land area [19]. 

However, weak and insignificant correlations have been observed between C-band 

backscatter and AGB [20]. On the other hand, combining the extractive information of 

different sensors instead of using a single sensor has produced more promising results 

for estimating biophysical parameters, especially forest biomass [21]. 

Foody et al. (2003) used artificial neural networks (ANN) to estimate above ground 

biomass in three different tropical forests by Landsat TM data. The best result of biomass 

calculation had R2= 0.49 and the weakest result  had R2= 0.38 [4]. 
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Mutanga et al. (2012) used Worldview-2 satellite data to estimate biomass of the Wetland 

plants by Random Forest (RF) methods. In this study, performance of Normalized 

Difference Vegetation Index (NDVI) was evaluated in biomass estimation and the result 

of evaluating the random forest method included RMSE= 0.44 Km/m2 [22]. 

Ghasemi et al. (2012) Estimated northern of Iran forest biomass by using multiple 

regression and ALOSAVNIR and ALOSPALSAR images. In this study, vegetation 

indices, Wavelet coefficient and texture index in the images were calculated for biomass 

estimation. The result of modelling was R2= 0.80 [10].  

Laurin et al. (2014) used Lidar and Hyperspectral data to estimate the AGB of an African 

tropical forest by Multiplicative Power Model (MPM) and Partial Least Square 

Regression (PLSR) model. In this study, the result of integration of Lidar and 

Hyperspectral data was the best by PLSR that was R2 = 0.70 [23]. 

Karlson et al. (2015) developed a Random Forest model to estimate forest AGB by using 

Landsat-8 and world view-2 data. In this study, vegetation indices, tasseled cap and 

texture index were calculated to model AGB and the result of modelling was RMSE= 17.6 

ton/ha [24]. 

Pham et al. (2018) used Sentinel-2 and ALOSPALSAR data to estimate forest AGB in 

Japan by support vector regression (SVR) method. The result of biomass estimation had 

R2= %59 and RMSE= 0.187. 

Tavasoli et al. (2019) used Sentinel-1, Sentinel-2 and ALOSPALSAR data to estimate 

forest AGB by GA-SVM in north of Iran. The result of integration of the data was the best 

with R2= %83. In this study, 65 plots of ground biomass data were used to train and 

validate the model [25]. 

Nuthammacho et al. (2020) used Sentinel-1 and Sentinel-2 data to develop forest AGB 

model in Indonesia.  AGB correlated with the synergistic use of Sentinel-1 and Sentinel-2 

yielded the highest accuracy (i.e., R2 = 0.84) [26]. 

The objectives of this study are to investigate the usability of genetic-Random forest (GA-

RF) model for estimating the AGB in Hyrcanian forest using a combination of ALOS  

PALSAR , Sentinel-2 and Sentinel-1 data in north of Iran and to compute performance of 

the Random forest model for estimating the AGB. 

2. Materials and Methods 

2.1. Study area 

Our study area was the Kheyroudkenar Forest in Mazandaran province (North of Iran). 

The forests of these areas are Hyrcanian forests that are one of the most unique forests in 

the world. The average temperature of this region varies from 5 to 35 ° C annually. Its 

height varies from 0 to 2050 meters above mean sea level. The study area has a latitude 

from 51° 35’ 33’’ to 51° 35’ 58’’ and latitude 36° 34’ 49’’ to 36° 34’ 32’’ with an area of 34 

hectares (Figure 1). 
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Figure 1. Location of the study area. The blue figure on the upper right, Mazandaran Province and 

the lower right Landsat image show the exact location of the area. 

2.2. Data Set 

2.2.1. Field Data 

Field data were collected from 39 the square sample plots during July 2014 in the 

Kheyroudkenar forest 

and each plot had  an area of approximately 0.2  ha (2000 m2). In each sampling plots, 

Type of tree species and the diameter at breast height (DBH, cm) of all trees were 

recorded. The trees with DBH below 7.5 cm were not recorded in the survey. The 

sampling plots are located using a Trimble real time kinematic (RTK) GPS on the ground. 

The volume of each tree was calculated using tree-volume Tarif table and the total 

volume of trees in each sampling  plot was obtained The total AGB of each sampling plot 

was calculated using the Allometric equation (Eq.1) [27, 28].  

 

                
  

  
                                                                                        (1) 

Where the volume is volume of wood (m3/ha) and WD is the average critical wood 

density (ton/m3) [29]. 

2.2.2. Remote sensing Data 

 Optical Data 

The second series of Sentinel satellites began their mission on June 23, 2015. Sentinel-2 is a 

satellite designed to monitoring the Earth from the Copernicus EU program. The satellite 

is a polar orbit whose mission is to capture high resolution images to monitor 

phenomena such as water, soil, vegetation, and so on. The satellite has 13 spectral bands 

in the visible, near infrared and short wavelength infrared bands. The longest wavelength 

and the shortest band are related to SWIR band (2190 nm) and Coastal aerosol band (443 
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nm), respectively. These images have a spatial resolution of 10 to 60 meters [30]. In this 

research, the image was taken on 02 July 2018. 

 SAR Data 

ALOSPALSAR is a large Japanese satellite built by JAXA (Japan Aerospace Exploration 

Agency) for Earth observation. One of the most important features of a satellite is high 

resolution [25]. It has various applications in land cover, environment, forestry and 

agriculture research and plant ecosystems, topography and environmental hazard 

monitoring with the ability of 48 hours resolution [31]. For this study, the ALOSPALSAR 

image with high resolution HH-VV polarization was obtained on 21 June 2009. 

Sentinel-1 is a satellite operated by the European Space Agency (ESA) and consists of two 

satellites, Sentinel-1A and Sentinel-1B. It can also collect data from the ground in the 

worst weather conditions. The satellite records microwave and C-band wavelengths. 

Applications of this satellite include monitoring of frozen seas and the environment and 

care of marine environments, monitoring of land surface hazards, mapping of land, 

forests, soil and water, and emergency support in times of crisis and natural hazards [32]. 

In this research, the image was taken on 24 August 2018. 

2.3. Methodology 

In this study, forest above ground biomass and carbon stock modelling has been 

performed by GA-RF method. Figure 2 shows the process of AGB and carbon stock 

estimation which consists of the following: 

1. processing of remotely sensed data which includes preprocessing, feature 

extraction (calculation of vegetation indices, tasseled cap, texture parameters and 

principal component analysis (PCA) of Optical data, and extraction of  

Polarimetric decompositions, texture characteristics and backscatter coefficients 

of  SAR data); 

2. selection of the optimal features, generating a biomass estimation model, and 

biomass map generation. 

 

 

 

 

 

 

 

 



The 3rd International Electronic Conference on Geosciences, 7 - 13 December 2020 6 of 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of steps used for AGB and carbon stock estimation in this study 

2.3.1.Preprocessing of Remote sensing Data 

 

 Optical Data 

Optical 

data 

SAR 

data 

Field 

data 

Pre-processing 

Pre-processing Field biomass 

using Allometric 

equation 

Feature extraction 

Vegetation indices, 

Texture, Tasseled cap, 

PCA 

Feature extraction 

Polarimetric 

decompositions, 

Texture, Backscatter 

coefficients 

GA-RF 

Feature selection 

Biomass estimation model 

Validation 

Biomass & carbon stock map 

generation 

 



The 3rd International Electronic Conference on Geosciences, 7 - 13 December 2020 7 of 17 

Radiometric correction is used to reduce or eliminate three major errors (atmospheric 

errors, device errors, and topographic errors) and tries to improve the grayscale pixel 

value [25]. Due to the azimuth and altitude of the sun, atmospheric conditions such as fog 

or atmospheric aerosol particles, the reflected electromagnetic wave of the object received 

by the sensor does not match the returned wave of the observed object [30]. 

Geometric correction is the process of correcting the geometric distortion. Images must be 

converted to a reference coordinate system. Then the pixel values in the image should be 

compared with the reference image. Due to the change of viewing geometry of the 

satellite, the reflectance values for the same land cover feature are different [25]. 

 SAR Data  

SAR imagery in high altitudes has an error due to radar imagery geometry and high 

slope. The returned wave of the pixels under these conditions must be eliminated. Radar 

signals must be preprocessed to take account of geometric distortions such as overlap, 

foreshortening, shadow which disrupt the structure of images and differences in lighting 

conditions due to topography [25]. Noises created by reflection of features must be 

eliminated. These noises are called speckle noises and are eliminated by the Speckle 

filtering. This noise is a major reason of disturbance in SAR image matching and reduces 

the radiometric quality of SAR images. A typical process is applied to SAR data, 

including multi looking noise filtering, ground illumination correction, radiometric 

correction, and mosaic correction. Generally, the despeckling filter is used to move the 

kernel on each pixel in the image and performs mathematical calculations using the pixel 

values under this kernel and then replaces the central pixel with the calculated value. The 

image kernel moves along one pixel of the image simultaneously until the entire image is 

covered. Many filters have been developed to eliminate this noise while preserving edge 

information [33]. The enhanced Lee filter [34, 35] was applied on the SAR images to 

reduce the speckle noise. As optical data, SAR data are refined and radiometrically 

calibrated to produce suitable images for comparison. This step applies to images to 

correct radiometric and geometric distortions. These distortions mask useful backscatter 

related to land cover with geophysical features and need to be corrected for effective land 

cover mapping and visualization using SAR data. 

 

2.3.2.Feature Extraction 

 

 Optical Feature Extraction 

 

I. Vegetation Index (VI): VI is some mathematical constituent or spectral bands 

transform that shows the spectral properties of plants which appear distinct from 

other image features. Vegetation information from remote sensing data is mainly 

interpreted by the differences and variations of green leaves of plants and spectral 

features of the canopy [36]. Vegetation index enhances plant signal while reducing 

solar irradiance and soil background effects [37].The vegetation indices used are 

described in Table 1 [38-41]. 
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Table 1. Vegetation Indices 

Vegetation index equation 

Ratio vegetation index NIR/R 

Normalized difference Vegetation index 

(NDVI) 

(NIR- R)/( NIR+ R) 

Transformed vegetation index (TVI)           

Ashburn vegetation index (AVI) 2.0[800:1100]-[600:700] 

 

II. Texture: The texture is related to the spatial distribution of the intensity values in 

the image and the grayscale characteristics and expresses the spatial distribution of 

the pixel values in the image. Therefore, the texture can be described as the spatial 

distribution of grayscale in a neighborhood. Texture plays an important role in 

image analysis and pattern recognition. A number of texture features are extracted 

from the GLCM. The GLCM method is a way for extracting texture properties 

based on second-order statistics [42].  

III. Tasseled Cap: the tasseled cap is a transformation for converting the original 

image bands into a new set of bands with defined interpretations useful for 

vegetation mapping. The transformation is performed to evaluate the change in 

green biomass based on three components which are brightness, greenness, and 

wetness, indicating the correlation of the visible and infrared bands. Brightness 

and greenness shows changes in soil reflectance and variations in the power of 

green plants, respectively and wetness indicates surface moisture [43, 44]. 

IV. Principle Component Analysis (PCA): PCA can identify the main components 

and help us to analyze a set of features that have more information instead of all 

features. PCA is widely used to remove waste data in satellite data. Principal 

component analysis is divided into three steps; The first step is to obtain the 

variance-covariance matrix, the second step is to calculate the eigenvectors, and the 

third step is to linearly transform the data set [45]. 

 

 Radar Feature Extraction 

 

I. Back Scatter Coefficient: The normalized measure of returned radar signal from a 

distributed target is called the back scatter coefficient and is defined as the unit of 

the surface. The back scatter depends on the dielectric content properties of the 

surface. Analysis and evaluation of backscatter coefficients can provide valuable 

information on surface moisture content, surface roughness and dielectric content, 

and vegetation cover [46]. The back scatter of a canopy depends on the geometry of 

the leaves, branches, trunk, and moisture inside the canopy. Back scatter of the 

forest may include a number of scattering components from different parts of the 

forest, such as volume scattering of canopy branches, back scatter of the ground, 

and back scatter of branches and leaves [47, 48].  

II. Polarimetric Decomposition: Polarimetric decomposition is the decomposition of 

the coherent matrix or covariance matrix [47] into a set of independent matrices 
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that exhibit independent scattering related to various physical scattering 

mechanisms such as surface, double bounce and volume scattering. The 

Polarimetric decomposition of SAR data is an analysis to determine different types 

of backscatter. There are different types of decomposition methods. The 

Polarimetric decomposition methods used are m-sigma    δ  decomposition, m-

chi (m_χ) decomposition, m-alpha (m_α) decomposition [49-52], compact 

decomposition [53], Eigen vector decomposition [47] and H/A/Alpha 

decomposition[54]. 

 

III. Texture: The texture feature of radar data is the same as the texture feature of 

optical data. 

 

2.3.3. Above Ground Biomass Modelling Based on GA-RF 

To model the relationship between the features and forest biomass, we used random 

forest [55]. Random forest (RF) is a cumulative learning technique that is combining set of 

decision trees to improve the classification and regression trees (CART) methods. In 

random forest, each tree is built using a defined algorithm by selecting a random sample 

from the training dataset. Bootstrap is built on the number of training data. bootstrap 

samples mean sample with replacement [22]. The two parameters need to be determined: 

ntree variable, the number of decision trees that need to be created and mtry, the number 

of features to each node in a tree [56]. These two parameters were optimized based on the 

root mean square error (RMSE) [22]. 

In this section, the Genetic-Random Forest Algorithm is developed which aims to use 

Genetic algorithm [57] to improve above ground biomass model. The main goal of 

Genetic algorithm is feature selection [58]. Given that, the number of extracted features is 

large; using a suitable method to select the best features has a significant impact on the 

efficiency of the Random Forest model in biomass estimation. The total process of Genetic 

algorithm to select features among total features performs as follow: 

The first population of features created randomly. Every sample of the population has n 

Genes which is equal to the number of features in dataset. On the other hand, each Gene 

determines whether a feature commensurate with that gene has been used to build the 

model; if used, its value is equal to 1; otherwise it is equal to zero [59]. As a result, each 

sample of the population represents a choice for the existing features. For each sample of 

the population, the corresponding model is created. After the Random Forest model 

creation, this model is evaluated with validation dataset and its RMSE is obtained. A 

random forest with less RMSE is a better sample. When all samples of the population 

have been evaluated, the genetic algorithm builds the next generation. 

 

3. Results and Discussion 

3.1. Above Ground Biomass 
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In this section, after data preprocessing and indices extraction, the AGB and carbon stock 

maps were determined by GA-RF method. First, the best indices of Optical and SAR Data 

were selected by GA algorithm, distinctly (Figure 3, Figure 4). The quantitative result 

which were used R2 to analyse GA-RF model of AGB. 

 

Figure 3. The best selected features of the Optical data for biomass estimation by GA: (a) texture 

(Data range variable) of band 6, (b) texture (variance variable) of band 6, (c) texture (variance 

variable) of band 5, (d) texture (variance variable) of band 8. 
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Figure 4. The best selected features of the SAR data for biomass estimation by GA: (a) m-δ 

decomposition (Delta variable) of Sentinel-1, (b) Compact decomposition (Compact RSOV variable) 

of Sentinel-1, (c) Compact decomposition (Compact pd variable) of Sentinel-1, (d) H/A/Alpha 

decomposition (P1 variable) of Sentinel-1, (e) texture (Homogeneity variable) of Sentinel-1, (f) Eigen 

vector decomposition (Entropy variable) of ALOSPALSAR. 

As mentioned, in this study, the total number of field data plots is 39. About %70 and 

%30 of them were selected as model train and test data, respectively. The measured AGB 

plots and the measured indices of the data were also considered as response variables 

and independent variables, respectively. In this model, among 27 bootstrap samples, 100 

decision trees (ntrees) were achieved the best result for AGB modeling by optical data 

and 300 decision trees for AGB modelling by SAR data (Figure 5). Optimization of the 

number of trees variable is calculated by minimizing the RMSE using test data. The final 

output (AGB) was the average output of decision trees. 
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Figure 5. The RMSE variation based on ntree: (a) modelling by optical data, (b) modelling by SAR 

data. 

Figure 6 shows the results of the proposed method which are the biomass predictions 

obtained from the RF model of the best performance using the optical and SAR data. The 

road area was masked out. 

 

 
Figure 6. Above ground biomass derived from GA-RF: (a) AGB by optical data, (b) AGB by SAR 

data. 

The AGB map is converted to carbon by the scaling factor. We use carbon fraction of dry 

matter conversion factor of 0.47 (Figure 6) [60]. 

 

Figure 7. Carbon stock derived from GA-RF: (a) carbon stock map by optical data, (b) carbon stock 

map by SAR data. 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 8 compares the predicted AGB by the GA-RF model and the AGB field 

measurements. The results show significant accuracies which illustrate the result of AGB 

estimation of combination of Sentinel-1 and ALOSPALSAR data (R2= %70) is better than 

the result of Sentinel-2 data (R2= %62). 

   

Figure 8. Comparisons between the field AGB and predicted AGB derived from Optical and SAR 

data: (a) modelling by Optical data, (b) modelling by SAR data. 

3. Conclusion 

Accurate biomass assessment is essential in order to manage the forest and understand 

its role as a carbon source. In this study, we assessed the ability of combination of 

Sentinel-1 and ALOSPALSAR data, and Sentinel-2 data for mapping aboveground 

biomass (AGB) in a part of Hyrcanian forest of northern Iran. Vegetation indices, tasseled 

cap, texture parameters and principal component analysis (PCA) variables of Sentinel-2 

data, and Polarimetric decompositions, texture characteristics and backscatter coefficients 

of  Sentinel-1 and ALOSPALSAR data  were extracted and used as input to GA-RF 

model. We reached the following conclusions from this study: 

1) Due to the lack of access to all areas and high cost and time consuming by ground 

method, these problems can be overcame by using remote sensing method. 

2) The combination of Sentinel-1 and ALOSPALSAR data illustrated better 

performance in estimating AGB compared to sentinel-2 data. 

3) GA-RF Model is beneficial and fast to achieve high accuracy in AGB prediction. 

4) The use of feature selection method (GA) to reduce the number of predictor 

features improved the performance of the RF model. 

5) Effectiveness of texture and decomposition features on AGB calculation. 
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AGB: Above Ground Biomass 

GA-RF: Genetic-Random Forest 

PCA: Principle Component Analysis 

GIS: Geospatial Information System 

MPM: Multiplicative Power Model  

PLSR: Partial Least Square Regression 

SVR: Support Vector Regression 

GA-SVM: Genetic-Support Vector Machine 

DBH: Diameter at Breast Height 

RTK: Real Time Kinematic 

ESA: European Space Agency  

JAXA: Japan Aerospace Exploration Agency 

SAR: Synthetic Aperture Radar 

GLCM: Gray Level Co occurrence Matrix 

VI: Vegetation Index 

RMSE: Root Mean Square Error 
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