Laminar Dispersive and Distributive Mixing with Dissolution and Applications to Hot Melt Extrusion (HME)

Costas G. Gogos and Huiju Liu

New Jersey Institute of Technology and the Polymer Processing Institute

Prof. Peng Wang 1975 – 2012 Sr. Polymer Scientist at NJIT and PPI 2007 - 2010

Oral drug delivery products

Figure adapted from: Rocca J. et al. (2004). Drug Delivery Technology **4**

For the API to be **Bio-available** it must **necessarily dissolve in the GI tract** (stomach or Small Intestines)

Oral Drug Delivery Products (tablets, capsules..)

INACTIVE (EXCIPIENT) INGREDIENTS (binders/additives)

What if the API were Very Poorly Water soluble?..

Need for Solubility Enhancement

BCS I BCS II BCS III BCS IV

Number of poorly soluble drugs is increasing!

From: Benet L. Wu C.-Y. et al 2006, Bulletin Technique Gattefosse 99:9-16

Biopharmaceutical Classification System

Class I:	High solubility and high Permeability
Class II:	Low solubility and high Permeability
Class III: High solubility and low Permeabi	
Class IV:	Low solubility and low Permeability

Pharmaceutical Hot Melt Extrusion (HME) Holds the Potential of Dramatically Increasing API Solubility

Why Does HME Result in a Dramatic **Increase in API Solubility?**

- A poorly soluble API and hydrophilic Polymer Excipient are extruded, much like in an extrusion **compounding** process
- Process Conditions: $T_{m, API} > T_{process} > T_{g} + (50 \sim 100 \circ C)$

```
and t_{res} = 60 - 200s
```

- The API, with enhanced solubility at the elevated T process dissolves in the molten polymer forming a homogenous solution
- Ideally, an **amorphous glassy single phase** system is produced during extrudate cooling, which is stable during "shelf life"

Example: H M Batch Mixing

EudragitTM E PO : Indomethacin (70:30)

Run #	Process Temperature (°C)	rpm	Sampling Time
1	100	20	
2	100	100	
3	110	20	55, 100, 145 285 420
4	110	100	
5	140	20	

Eudragit [™] E PO (E PO)

T _g= 48 °C

Indomethacin (INM)

T _m= 162 °C

Batch Mixer

Dramatic Increase of API solubility

H M Batch-mixed INM and Eudragit[™] EPO.

Fig. 9. Dissolution profiles in pH 1.2 buffer solution of runs at: (\bigcirc) 100% INM; (\bullet) physical mixture; (\diamond) 100°C 20 rpm; (\triangle) 110°C 20 rpm; (\Box) 100°C 100 rpm; (\bullet) 110°C 100 rpm; (\blacksquare) 140°C 20 rpm.

From H. Liu et al. Int. J. of Pharm., **383** 161 (2010).

Polymer Excipients Used in Oral Drug Delivery

	Soluble in all pH	pH-dependent Soluble Polymers	Swellable
Low T _g Shelf life Stability?	 Polyethylene Glycol Polaxamer Soluplus 	 Polymethacrylates Eudragit E Eudragit L & S Polyvinyl Acetate Phthalate 	 Polymethacrylates Eudragit N Eudragit RL & RS
High T g API Degradation During HME?	 Povidone Copovidone Hydroxypropyl cellulose Hypromellose 	 Hypromellose Phthalate. Hypromellose Succiyl Acetate Cellulose Acetate Phthalate 	 Ethycellulose Cellulose acetate

Drug delivery systems produced HME

Name	Polymer	Application	Indication	
Dapivirine-Maraviroc	EVA	Implant	Anti-Viral (HIV)	
Lacrisert®	НРМС	Implant	Dry eye syndrome	
Nuvaring	EVA	Implant	Contraceptive	
Zoladex	PLGA	Implant	Prostate cancer	ţ
Implanon	EVA	Implant	Contraceptive	Withdraw from the market
Ozurdex®	PLGA	Implant	Macular Edema	he m
Kaletra	PVP-VA	Tablet	Anti-Viral (HIV)	t t
Norvir®	PVP-VA	Tablet	Anti-Viral (HIV)	w fro
Eucreas [®]	НРМС	Tablet	Diabetes	dra
Zithromax [®]	НРМС	Tablet	Antibiotic	With
Gris-PEG [®]	PEG	Tablet	anti-fungal	
Rezulin [®]	Povidone (PVP)	Tablet	Diabetes	
PalladoneTM	EC + Eudragit [®] RS	Tablet	Pain	рe
Cesamet [®]	Nabilone	Tablet		Marketed
Posaconazole			Anti-fungal	Σ
Anacetrapib			Cardiovascular disease	

Under development

HME patents from 1983 to 2006

Number of HME patents issued for pharmaceutical applications

US

28%

France

5%

Figures adapted from: Crowley, M.M. et. al. (2007). Drug Dev. Ind. Pharm. **33**, 909-926.

The Leistritz Pharma Nano 16 at NJIT/PPI

Figure taken from: <u>http://www.alec-usa.com/tsrpt0210.htm</u>

- Co-rotating , Self-wiping TSE.
- Very small "Tri-lobal" free volume.
- Micro-plunger allows to work with small batches of 20-100g.

New Jersey's Science &

Ν

Single-flighted: 1 partial

Double-flighted: 3 partial

Figures adapted from K. Kohlgrüber (2008)

Elementary Steps of Polymer Compounding

Polymer Compounded Pellets having specific "value added" properties

Tadmor and Gogos, Principles of Polymer Processing, 2nd Ed (2006)

Elementary Steps of Pharmaceutical Hot Melt Extrusion Processes

Gogos and Liu, 2011

The HME Process

Thermo-mechanical History and Fundamental Process Issues

Particulates Handling: Dissimilar Flowabilities of APIs and Polymer Excipients

Smaller, cohesive

Soluplus[®]

"Taylored", Larger, Flowable

Repeated Expansion/Contraction Deformations in FULL [F/R] Kneading Elements

Result in Rapid and Space-wise Uniform Melting and Mixing

Tadmor and Gogos Principles of Polymer Processing 2nd Ed (2006)

Melting Mechanism in Co-rotating Twin Screw Extruders

Tadmor and Gogos, Principles of Polymer Processing, 2nd Ed (2006)

C1 < C2 < C3 C1 < solubility @ T0 < C3

Zero shear viscosity vs. INM% in Eudragit™ EPO at 145°C (Strong Intermolecular Forces)

	Type of bond	Bond energy [kJ/mol]
ngt	Ionic bonds	600-1500
↑ Stre	Hydrogen bonds	35- 51
	Dipole-Dipole	up to 10

HME Processing Temperature Solubility Determination Using RMS Rheometry

$$\eta = \tau / \gamma$$

*T*_m (APAP) 170 °C

*T*_m (PEO) 62 °C

- η decreases indicating drug dissolution induced plasticization
- η increases due to the formation of API particle /molten polymer "suspension" formation

B. TSE: Effects of Screw Configuration on the Dissolution of Indomethacin in Eudragit[®] E PO (E PO:INM=70:30)

Morphology Evolution (140 °C 50rpm 0.2kg/hr)

One Strong Fully Filled F/R Kneading

No Fully Filled F/R Kneading

Liu et al., Advances in Polymer Technology. 2011: doi: 10.1002/adv.20256.

T _{processing} > MT _{polymer} / T _g+50~100 $^{\circ}$ C and T _{processing} > MT _{drug}

Foam extrusion in drug delivery

1. Physical Blowing Agents as fugitive plasticizers:

Processing temperature can be decreased without adding "dead weight" to the formulation and without affecting the long term stability and performance of the product.

2. Floating oral dosages:

Some APIs must be absorbed in the stomach due to therapeutic reasons or API's instability at higher pHs.

3. Foams to improve milling efficiency of HME products

By milling foamed structures it is possible to obtain smaller particles with narrow particle size distribution and higher surface are.

4. Increasing dissolution/release rate

Bimodal foamed disk

Uniform foamed disk

Higher surface area & shorter diffusional lengths accelerate solvent absorption.

Random collapse and breakdown of cellular structure is key for an overall increase in release rate. This behavior is favored by non-uniform cellular structures Determination of ambient temperature solubility for shelf life stability - spherulitic morphology and growth rate, number of spherulitic nuclei

PEO

1%APAP-PEO

10%APAP-PEO

30 °C

- @30 °C, # of spherulitic nuclei of 10%APAP-PEO>>PEO
- @50 °C, Maltese cross patterns and spherulite structure of 10%APAP-PEO was destroyed

Possible modes of segregation in a binary blend that is miscible in the amorphous state and contains one crystallizing component

a. Intralamellar

b. Interlamellar

c. Interfibrillar

d. Interspherulitic

APAP might locate between PEO spherulites (interspherulitic)@50 °C

10%APAP-PEO @30 °C

10%APAP-PEO @50 °C

• Crevecoeur G, Groeninckx G. Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules. 1991; 24 (5): 1190-5.

NJIT/PPI Center for Fundamental HME Studies

NJIT

Prof. Marino Xanthos Dr. Huiju Liu Polymer – now at Honeywell Dr. Nicolas Ioannidis Prof. Costas Gogos

PhD Students:
 Dr. Min Yang – now at Evonik
 Ms. Graciela Terife – studying HME foaming
 Mr. Nonjaros Chomcharn – Studying the use of nanoclays
 PPI

Dr. Niloufar Faridi Dr. Linjie Zhu Dr. Herman Suwardie