

Meteorological characteristics associated to air pollution in Bucharest Greater Area, Romania

T. Hriscan^{1,2}, S. Chirita¹, M. Burcea^{1,2}, A. Calcan³, M. Corbu^{1,3}, G. Iorga^{1,4}

(1) University of Bucharest, Faculty of Physics, (2) National Meteorological Administration, (3) National Institute for Aerospace Research 'Elie Carafoli' INCAS, Environmental Aerodynamics, (4) University of Bucharest, Dept. of Physical Chemistry (tiberiu.hriscan@gmail.com)

Observation: lowest PM₁₀ and PM_{2.5} in 2016 were correlated with intense precipitation events

Example: Bucharest and Prahova Region, 17-20.06.2016

Percentile	PM _{2.5}	PM ₁₀
	(μg m ⁻³)	(μg m ⁻³)
Minimum	9.09	10.9
P25	12.54	22.17
P50 (Median)	15.81	27.44
P75	20.72	33.26
Maximum	47.78	75.95

(Chiritescu, Hriscan et al., Geophys. Res. Abs. 21, 2019)

Bucharest Greater Area

(44° 26'N, 26° 06'E)

Located in open plain; surface of about 285 km²; altitudes: 56 m a.s.l. (SE) to 92 m a.s.l. (W); relatively round shape.

Main Pollution Sources

- Industrial -> electrothermal power stations (CETs)
- Traffic mixed vehicle fleet (non-EURO ÷EURO6)
- Construction sites
- Residential heating sources
- Various points/areas where domestic waste is collected and stored
- Plenty of agricultural activities in the peri-urban area

(Manolache et al., 2019)

Objective

This study examines how the concentrations of particulate matter with an aerodynamic diameter below 10 μ m (PM₁₀) and below 2.5 μ m (PM_{2.5}) and main gaseous pollutants (NOx, O₃, SO₂, CO, C₆H₆) might be linked with precipitation characteristics using an observational data set for three years (2015-2019) in Bucharest metropolitan area:

- Estimation of the scavenging coefficient Λ of particulate matter
- Link of Λ with rainfall category during the annual convective periods.
- Possible link between reduced air pollution and meteorological phenomena and the air mass history.

Data and methods

Daily mean PM₁₀ and PM_{2.5} mass concentrations over Bucharest; 2015-2019

Urban area

Daily mean PM₁₀ and PM_{2.5} mass concentrations over Bucharest; 2015-2019

PM2.5/PM10:

2016: 0.77 (R^2=0.73),

2017: 0.63 (R^2=0.55),

2018: 0.79 (R^2=0.79)

2019: 0.88 (R^2=0.94)

Daily mean NOx mass concentrations over Bucharest; 2015-2019

Suburban area

Urban area

Precipitations by type during convective seasons 2015-2019

RADAR Z-R relationship: $Z = a R^b$ RADAR reflectivity Z (dBZ), Rain Rate (mm h⁻¹), Stull (2000) classification

Precipitations by type during convective seasons 2015-2019

RADAR Z-R relationship: $Z = a R^b$ RADAR reflectivity Z (dBZ), Rain Rate (mm h⁻¹), Stull (2000) classification

Scavenging Coefficient: determination and comparisons

Scavenging coefficient
$$\Lambda$$
:
$$\frac{dC}{dt} = -\Lambda$$

C= particulate matter concentration (μg m⁻³); t=time (h⁻¹)

Λ (h ⁻¹)	Reference	Observations	
3.36 x 10 ⁻⁵	Webster and Thomson (2014)	in-cloud	
8.4 x 10 ⁻⁵	Webster and Thomson (2014	below cloud	
2.3 x 10 ⁻⁶ – 8.4 x 10 ⁻⁵	Zikova and Zdimal (2016)	10-800 nm	
1.1 x 10 ⁻⁵ – 7.6 x 10 ⁻⁴	Chate and Pranesha (2004)	13-750 nm	
5.9 x 10 ⁻⁶ –1.4 x 10 ⁻⁵	Maria and Russell (2005)	10-20000 nm	
6.2 x 10 ⁻⁵ – 3.0 x 10 ⁻⁴	Depuydt et al. (2013)	250-32000 nm	
3.29 x 10 ⁻³ – 4.71 x 10 ⁻³	Hriscan et al. (2019)	long, intense (7-8 consecutive days)	
	Examples from this study, focus on long (>24 h ⁻¹) precipitations		
8.50 x 10 ⁻⁴	intense / heavy (30 h, July 2017)		
3.19 x 10 ⁻³	light / moderate (26 h, May 2017)		

Connections to meteorological phenomena occurrence and air mass history

Connections to meteorological phenomena occurrence and air mass history

Examples of typical air mass back trajectories

Conclusions

- We observed PM_{10} levels exceeded frequently the daily limit value of 50 µg m⁻³ imposed by the EU legislation; even peaks of about 2.5 times higher were observed. Both PM_{10} and $PM_{2.5}$ presented higher values during the wintertime and generally higher values in 2015, 2016, 2017 and 2019 than in 2017. A large fraction of fine particles is present in PM.
- The annual mean mass concentrations of gaseous pollutants showed variations as follows: NOx values are two times higher in the urban versus suburban area, while O_3 C_6H_6 , and SO_2 values have the same level during 2015-2019.
- Type of precipitation has a strong influence on the atmospheric aerosol concentrations: intense and heavy precipitation determined an increased value of scavenging coefficient with up to one order of magnitude higher than in case of a moderate precipitation.
- Assessment of mean scavenging coefficient for Bucharest Greater area has been performed for the first time.
- Present results show a good capability of the convective precipitating systems to clear the atmosphere from aerosol over Bucharest Greater Area.

Acknowledgements

The authors thank the financial support from EEA-RO-NO-2019-0432 project, contract 31/01.09.2020, and UB198 project and to National Meteorological Administration for access to the RADAR database. NOAA Air Resources Laboratory for HYSPLIT transport model available at READY website https://www.ready.noaa.gov is also acknowledged. The data regarding ground-based air pollution and local meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro, last accessed in August 2020.

Thank you!

