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Abstract

Transportation sources are a major contributor to air pollution in urban areas. The role of air quality modelling is
vital in the formulation of air pollution control and management strategies. Many models have appeared in the
literature to estimate near-field ground level concentrations from mobile sources moving on a highway. However,
current models do not account explicitly for the effect of wind shear (magnitude) near the ground while
computing the ground level concentrations near highways from mobile sources. This study presents an analytical
model based on the solution of the convective-diffusion equation by incorporating the wind shear near the
ground for gaseous pollutants. The model input includes emission rate, wind speed, wind direction, turbulence,
and terrain features. The dispersion coefficients are based on the near field parameterization. The sensitivity of
the model to compute ground level concentrations for different inputs is presented for three different downwind
distances. In general, the model shows Type III sensitivity (i.e. the errors in the input will show a corresponding
change in the computed ground level concentrations) for most of the input variables. However, the model
equations should be re-examined for three input variables (wind velocity at the reference height and two variables
related to the vertical spread of the plume) to make sure that that the model is valid for computing ground level
concentrations.




Introduction

Classification of air quality models based on various attributes and model categories

Attributes

Source
Receptor
Frame
Dimensionality
Scale

Structure
Approach
Applicability
Complexity

Model category

Point, line, area, volume, flare

Street Canyon, intersection model

Lagrangian, Eulerian

Single, double, triple, or multidimensional

Microscale and mesoscale, small synoptic, large synoptic, planetary

Analytical, statistical

Numerical, experimental

Simple terrain, complex terrain, rural flat terrain, urban flat terrain, coastal terrain

Screen models, refined models




Model Development

The analytical solution of the convective-diffusion equation to calculate the concentration of
pollutants at any downwind distance is given by
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where, C is the concentration of pollutants at a point (X, z), X is the downwind distance, z is the vertical height of the
receptor above the ground, g is the emission rate of the mobile source per unit length, m and n are the exponents of

power-law velocity profile and eddy diffusivity profile respectively, s is the stability parameter based on m and n, 14
and K, are the wind velocity and eddy diffusivity at a reference height z, respectively.




Vertical Dispersion Coetficient

au,x
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mg - vertical spread due to the turbulence created by moving vehicles
U is the effective wind velocity,

U, is the surface friction velocity, and

L is the Monine-Obukhov length

a and by are empirically found coefficients




SLINE — Final Equation




Sensitivity analysis

Variation in input

The categories' sensitivity analysis and output
changes

Categories Changes in
calibration residuals

Changes in model
conclusions

Insignificant changes

Insignificant changes
in model conclusions —
Variation in Type I

in calibration residuals
input
parameters
Type 1T

Type 111
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Ranges of the independent input variable used

for the sensitivity analysis

Emission rate Wind Coefficient Surface friction Coefficient Coefficient Vertical
of pollutants | velocity Uy m velocity a b spread due
q (g/m/sec) (m/s) u, to the
(m/s) height of
the vehicle




Standard input values considered for sensitivity

analysis

0.0025 1.4 0.5 0.0 0.3 0.825




Sensittvity Analysis Results

* The variable parameters considered in the sensitivity analysis are emission
rate of pollutant (¢), wind velocity at the reference height (U,), coetficient 4,
coefficient , coefficient bs , sutrface friction velocity (u, ), and additional
vertical spread due to the turbulence created by the vehicles (m;).

The parameters are vital in describing the sensitivity of the gaseous
dispersion model. The plots given in the following figures between the
modeled outputs and residuals determine the type of sensitivity for each
parameter.




At Distance = 10m

Calculated Concentration over range of Emission Residual Plot
Rate
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At Distance = 50m

Calculated Concentration over range of Emission
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At Distance = 250m

Calculated Concentration over range of Emission
Rate
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At Distance = 10m

Calculated Concentration over range of Wind velocity
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Calculated Concentration over range of Wind
velocity

15
Wind velocity (u_1)

At Distance = 50m

Residual Plot
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At Distance = 250m

Calculated Concentration over range of Wind velocity Residual Plot
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At Distance = 10m

Calculated Concentration over range of Exponent of Residual Plot
the power-law velocity profile
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At Distance = 50m

Calculated Concentration over range of Exponent of Residual Plot

the power-law velocity profile
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At Distance = 250m

Calculated Concentration over range of Exponent of

the power-law velocity profile
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Calculated Concentration over range of Coefficient a
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Residual Plot
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At Distance = 50m

Calculated Concentration over range of Coefficient a

Residuals

y =-567.73x + 55’8.'}6...
R2 =0.9592

o
&
S~
a0
3
g
-3
-
3]
b=
[=
(7]
Q
[=)
o
®)

0.52 0.57
Coefficient a

Residual Plot

Coefficient a

y = -567.73x + 338.15-..
R? = 0.9592




At Distance = 250m

Calculated Concentration over range of Coefficient a
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At Distance = 10m

Calculated Concentration over range of Spread due to Residual Plot
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At Distance = 50m

Calculated Concentration over range of Spread due
to Mobile Turbulance
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At Distance = 250m

Calculated Concentration over range of Spread due to

Mobile Turbulance
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At Distance = 10m

Calculated Concentration over range of Coefficient
b s
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At Distance = 50m

Calculated Concentration over range of Coefficient
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At Distance = 250m

Calculated Concentration over range of Coefficient Residual Plot
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At Distance = 10m

Calculated Concentration over range of Surface
friction velocity (u_*)
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At Distance = 50m

Calculated Concentration over range of Surface Residual Plot
friction velocity (u_%)
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At Distance = 250m

Calculated Concentration over range of Surface Residual Plot
friction velocity (u_¥*)
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Conclusion

A new model SLINE 1s presented to compute downwind concentrations from line
sources on a highway. The sensitivity analysis shows that the model does not exhibit
Type III sensitivity for all the input variables. However, the model show Type I
sensitivity for the input parameters q, m, U, , a and M in computing concentration at
all the downwind distance. One of the vertical spread variables bg to compute the
vertical spread of the plume shows Type II sensitivity. The type of model sensitivity
for the reference wind velocity 1s mixed at different downwind distances. It is
important to note that the model formulation should be reexamined for uq, by, and
m; so that the model is not invalidated as outlined in the ASTM Gude (1994). Further
study should focus on evaluating the model against the observed data and to
determine the sensitivity of the model using simultaneous changes in model inputs.
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