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Abstract: Water, in its various forms, is considered a key parameter in climate change studies. Water 10 
vapor is recognized as the most important natural greenhouse gas playing a vital role in the 11 
hydrological cycle. Thus, studying air humidity fluctuations may contribute towards a deeper 12 
understanding of the radiative and thermodynamic processes that take part in the Earth’s 13 
atmosphere. Traditional statistical analysis is not always efficient to describe complex physical 14 
processes with high temporal variability. In addition, a more thorough study of the variations of 15 
climatic parameters requires examination of their time series fluctuations over multiple time scales. 16 
Fractal theory offers robust solutions that satisfy the above requirements. In this work, the 17 
Multifractal Detrended Fluctuation Analysis (MF-DFA) is used in order to investigate the intrinsic 18 
dynamics of daily relative humidity time series over the Greek region from a nonlinear perspective. 19 
The scaling properties and the multifractal structure of the time series are studied by examining the 20 
fluctuation function, the multifractal spectrum and the Hurst exponent. 21 
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 24 

1. Introduction 25 

   Meteorological time series are generally characterized by a nonlinear behavior. Therefore, 26 
conventional statistical methods, which include the autocorrelation function or spectral analysis, are 27 
not always capable of revealing the complex behavior of natural processes and parameters where 28 
non-stationarities may exist. In addition, traditional statistical methods, such as trend analysis, 29 
usually examine time series taking into account a single time scale and neglecting time series features 30 
that occur over a wide range of temporal scales. The development of fractal theory has offered robust 31 
solutions in order to overcome these issues. Fractal approaches, in general, are based on the division 32 
of a time series into self-similar parts and the detection of the power-law behavior that reflects the 33 
scaling characteristics of the system. Kantelhardt et al. [1] introduced the Multifractal Detrended 34 
Fluctuation Analysis (MF-DFA) in order to determine the scaling behavior of time series with 35 
statistical properties that vary temporally. It is widely considered a valuable tool for time series 36 
analysis and has been used in a significant number of environmental studies [2-4]. Concerning the 37 
Greek region, in particular, Kalamaras et al. [5-6] studied the multifractal characteristics of daily 38 
temperature time series from meteorological stations of the Hellenic National Meteorological Service 39 
network as well as their geographical distribution. Philippopoulos et al. [7] also investigated the 40 
multifractal properties of daily temperature time series using the ERA-Interim reanalysis dataset. 41 
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Tzanis et al. [8] have also applied the Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) 42 
[9] in order to investigate the multifractal structure of the cross-correlation between global methane 43 
and temperature. In this work, our scope is to study the multifractal characteristics and the scaling 44 
behavior of daily relative humidity time series [10] from meteorological stations at different locations 45 
within the Greek region. 46 

2. Experiments  47 

2.1 Data 48 

Surface relative humidity (RH) observations during the synoptic hours (6, 12 and 18 UTC) were used 49 
in this work. The RH data cover a complete 30-year period from 1975 to 2004 and were obtained from 50 
three meteorological stations of the Hellenic National Meteorological Service (HNMS) network, 51 
namely Thessaloniki, Athinai (Hellinikon), located in the city of Athens, and Herakleion (Figure 1). 52 
The geographical characteristics of the three meteorological stations are summarized in Table 1. At 53 
this point, it should be noted that significant data gaps exist after the selected time period and since 54 
this work focuses only on the scaling properties of the time series the use of this data was avoided. 55 
Prior to the application the MF-DFA method, the daily means (RHdaily) of the 6-hour relative humidity 56 
data were calculated. 57 

Table 1. List of meteorological stations 58 

Station WMO ID Lat (N) Lon (E) Elev. a.s.l. (m) 

Thessaloniki 16622 40o 31’ 29” 22o 58’ 18” 1.68 

Athinai (Hellinikon) 16716 37o 53’ 23” 23o 44’ 31” 43.13 

Herakleion 16754 35o 20’ 07” 25o 10’ 55” 39.00 

 59 

 60 

Figure 1. Locations of meteorological stations under study 61 
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2.2 Methodology 62 

The annual and semi-annual seasonal components that were identified in the daily relative humidity 63 
time series were subsequently eliminated using the Wiener filter [11]. The MF-DFA methodology was 64 
then applied to the time series of the deseasonalized surface RH data. A brief description of the MF-65 
DFA method is presented below: 66 

1. The profile X(i) is firstly constructed: 67 

𝑋(𝑖) = &[𝑥! − 〈𝑥〉]
"

!#$

(1) 68 

where by xk and < x > the time series and its mean value are designated, respectively. The upper 69 
bound of summation i takes values from 1 to N which corresponds to the length of the time series. 70 

2. X(i) is partitioned into an integer number of NS = int(N/s) non-intersecting segments all of which 71 
have the same length s, i.e., time scale. The segmentation procedure is also repeated for the 72 
retrograde time series of the profile. Thus, we get 2NS segments in total.  73 

3. Within each segment, a third-order (m = 3) polynomial 𝑋.% is fitted to the profile, representing 74 
the local trend, where v =1,…,2NS is the number of each segment. The local trend is then 75 
subtracted from the profile. 76 

4. The detrended variance F2(s,v) is then calculated: 77 
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5. Considering the average of all segments, we get the qth order fluctuation function: 79 
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For q = 0 we have,  81 

	𝐹+(𝑠) = 𝑒𝑥𝑝I
1
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Fq(s) is determined only for s ≥ m+2. For q = 2, the MF-DFA results are identical to the DFA procedure 82 
[12-16]. 83 

6. Fq(s) is computed for all values of s. The scaling behavior of Fq(s) is examined through the plot of 85 
log(Fq(s)) against log(s) for each moment q. For time series which are long-range correlated, Fq(s) 86 
follows a power law: 87 

𝐹((𝑠)~𝑠,(() (5) 88 
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For monofractal time series the scaling exponent h(q) remains constant and it is equal to the Hurst 89 
exponent H. For multifractal time series h(q) depends strongly on q, i.e. the scaling behavior is 90 
different for fluctuations of different magnitude. In these cases, h(q) is the generalized form of the 91 
Hurst exponent. For values of h(q) between 0 and 0.5 the time series is characterized by long-range 92 
negative correlation, denoting an anti-persistent character; for h(q) > 0.5, it is characterized by long-93 
range positive correlation (persistent behavior); for h(q) = 0.5 it is considered uncorrelated, i.e. white 94 
noise. 95 

Using the relationship τ(q)=qh(q)-1 and applying a Legendre transformation we get 96 

𝜏/(𝑞) = 𝛼 (6)  97 

and 98 

𝑓(𝑎) = 𝑞𝛼 − 𝜏(𝑞) = 𝑞[𝛼 − ℎ(𝑞)] + 1	 (7) 99 

The plot of f(α) against α is the multifractal spectrum and gives information about the multifractal 100 
structure of the time series. The value of α at which f(a)=max is called the dominant Hurst exponent 101 
α0 and corresponds to the prevailing scaling behavior [17]. Along with α0, the spectral width w is also 102 
a key feature. It can be estimated by fitting a second-order polynomial around α0 as proposed by [18] 103 
and measuring the distance between αmax and αmin, the two points where the fitting curve intersects 104 
the horizontal axis: 105 

𝑃(𝛼) = 𝛢(𝛼 − 𝛼+)& + 𝛣(𝛼 − 𝛼+) + 𝐶	 (8) 106 

A multifractal spectrum with a broad width indicates rich multifractality in the time series while 107 
smaller widths are associated with a more monofractal character. 108 

3. Results 109 

   After applying MF-DFA on the deseasonalized RH times series of the three meteorological 110 
stations, the basic plots of the method are derived, namely a) the log-log plot of the fluctuation 111 
function Fq(s) against s, b) the plot of the generalized Hurst exponent h(q) against the moments q and 112 
c) the multifractal spectrum f(α) against α. In Figure 2 the plots concerning the meteorological station 113 
of Thessaloniki are shown, however similar plots were obtained for the rest of the meteorological 114 
stations as well. The time scales used in the MF-DFA process range between 30 months and N/5 115 
where by N the length of the time series is denoted. The values of q also range from -6 to +6. From 116 
examination of Figure 2 it can be observed that log(Fq(s)) increases linearly with log(s) and the slopes 117 
h(q) are different for each q. This indicates that the relative humidity time series display multifractal 118 
characteristics. In addition, h(q) is greater than 0.5 for all moments q. From this, it can be deduced that 119 
the time series of daily relative humidity are characterized by a persistent behavior (i.e. they are long-120 
range positively correlated). This indicates that past events exert an influence on the succeeding 121 
values, i.e. an increase in the values of relative humidity is likely to be followed by an increase as 122 
well.  123 
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Figure 2. Multifractal Detrended Fluctuation Analysis (MF-DFA) results for RH from Thessaloniki 125 
station; (a) Plot of log(Fq(s)) against log(s); (b) Plot of h(q) against q; and, (c) Multifractal spectrum 126 

f(a) against a. 127 

4. Discussion 128 

   Among the three stations examined, Thessaloniki demonstrates the highest value of α0, i.e. it 129 
exhibits the greatest persistence, while the lowest value was observed at Herakleion (Figure 3). This 130 
implies that the distribution of α0 varies geographically with its values increasing with latitude. This 131 
could be attributed to the fact that the northern locations are more frequently influenced by 132 
atmospheric disturbances and the descent of dry cold air masses. This can cause significant 133 
temperature changes which may affect the persistence in the behavior of daily temperature time 134 
series. A decrease of daily temperature values leads to a decrease of the local atmosphere’s water-135 
holding capacity and thus an increase in daily relative humidity affecting also its persistence. 136 
Regarding the 137 

 138 

Figure 3. Multifractal spectrum parameters (w, α0) for the meteorological stations under study. 139 
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spectral width w, the stations of Thessaloniki and Herakleion exhibit similar values and thus a similar 141 
degree of multifractality. On the other hand, the Athinai (Hellinikon) station presents a lower value 142 
of w. This finding suggests that the time series of the meteorological station in Athens possesses 143 
weaker multifractal features compared to the stations of Thessaloniki and Herakleion and therefore 144 
they are characterized by a smaller degree of complexity. This could be attributed to the different 145 
climatic conditions that prevail in the greater area of Athens. 146 

5. Conclusions 147 

In this work, daily relative humidity time series were examined for three meteorological stations at 148 
different geographical regions of Greece using the MF-DFA method. The most interesting results can 149 
be summarized as follows: 150 

• Daily relative humidity time series are long-range positively correlated, which means that 151 
an increase in the values of relative humidity is likely to be followed by an increase as 152 
well. 153 

• The values of the prevailing scaling exponent α0 increase with increasing latitude. This 154 
could be explained by temperature and thus relative humidity changes. 155 

• Smaller values of spectral width w, and therefore weaker multifractality were found for 156 
the meteorological station of Athinai (Hellinikon). This could be attributed to the different 157 
climatic conditions that prevail in Athens. 158 
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