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Abstract: An important aspect in environmental sciences is the study of air quality, using statistical 10 
methods (environmental statistics) which utilize large datasets of climatic parameters. The air 11 
quality monitoring networks that operate in urban areas provide data of the most important 12 
pollutants, which via environmental statistics can be used for the development of continuous 13 
surfaces of pollutants concentrations. Generating ambient air quality maps can help guide policy 14 
makers and researchers to formulate measures to minimize the adverse effects. The information 15 
needed for a mapping application can be obtained by employing spatial interpolation methods to 16 
the available data, for generating estimations of air quality distributions. This study uses point 17 
monitoring data from the network of stations that operates in Athens. A machine learning scheme 18 
will be applied as a method to spatially estimate pollutants’ concentrations and the results can be 19 
effectively used to implement missing values and provide representative data for statistical analyses 20 
purposes. 21 
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 24 

1. Introduction 25 

Studying the distribution of air quality parameters is an important task of urban communities. 26 
According to the European Environmental Agency (EEA), air pollution is identified as a major 27 
environmental health hazard in Europe as hundreds of thousands of Europeans are affected each 28 
year by air quality issues [1-3]. Effective planning strategies require constant monitoring of the 29 
various pollutants, creating databases suitable for statistical analysis. Increased data availability can 30 
help researchers produce more reliable results. Spatial interpolation techniques have been widely 31 
used in air quality studies [4-5] as they can be utilized for data implementation in pollutant time 32 
series with missing values and even for sites of interest with no data availability. Additionally, by 33 
using these implemented databases, the development of informational tools such as Air Quality 34 
Indices (AQI) can be beneficial for presenting in a comprehensible manner new insight to policy 35 
makers and the public [6-8]. The EEA proposed a European Air Quality Index (EAQI) which is based 36 
on hourly concentrations of five key pollutants (PM10, PM2.5, NO2, O3 and SO2) and has six different 37 
levels based on each pollutant’s concentrations. This study aims to present a methodology for filling 38 
gaps in environmental sciences and specifically in the field of air quality. From the original datasets 39 
and based on concentration time series for the selected pollutants of the EAQI, a machine learning 40 
data implementation process was followed. This methodology can be utilized as a fast and effective 41 
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tool which will contribute to the development of indexes such as the EAQI which will subsequently 42 
visualize air pollutants’ profiles and provide insight in patterns and relationships. 43 

2. Experiments  44 

2.1 Data 45 

The air quality monitoring sites, from which the data were derived, are located at the 46 
metropolitan city of Athens, in Greece. As part of the southeastern Mediterranean region, Athens 47 
climate is defined by dry summers (long periods, during which the temperatures are considerably 48 
high) and wet winters (these periods are usually short) [9]. The basin is bounded by mounts Parnitha, 49 
Pentelikon, Hymmetus and Aigaleo to the north, northeast, east-central and west respectively. Due 50 
to the transport mechanisms, the topography of the area and the proximity to the sea, the air pollution 51 
fields are greatly affected by various flows of different scales [10-13]. The monitoring sites in the area, 52 
are part of an air quality monitoring network that operates since 1984, under supervision of the 53 
Hellenic Ministry of Environment and Energy (MEE). The network is considered representative of 54 
the pollutants’ spatial variability and thus suitable for the application of advanced statistical 55 
methodologies. For the development of the EAQI, a different number of stations was selected for each 56 
pollutant. The criterion for this selection was that a station should have at least a small percent of 57 
available data and thus, could contribute to the data implementation methodology. For the five 58 
pollutants, NO2, O3, PM10, PM2.5 and SO2, the number of stations used was fourteen, thirteen, eleven, 59 
six and six, respectively. All five were monitored hourly, and the time period of the analysis was 60 
three years (2016-2018).  61 

2.2 Methodology 62 

The first step in this study, after the database development, was to find the number of gaps that 63 
are present in each station’s data (target station/missing hourly concentrations) for 2018. This task 64 
was performed for all pollutants individually. However, in order to be able to apply effectively the 65 
machine learning spatial interpolation scheme, a specific criterion was adopted. For each one of these 66 
gaps at a target station, at the same time all the remaining stations must have an available 67 
measurement. Even if one of them had also a gap, it was not included in the interpolation process. 68 
The results of this step are presented in Table 1 and reveal the number of missing values that can be 69 
potentially estimated and used to increase the available data points. The next step was to apply an 70 
Artificial Neural Network (ANN) approach for spatial estimation purposes. To achieve this, a 71 
Shallow Neural Network (SNN) was utilized as a practical and fairly simple ANN that is moderately 72 
demanding in terms of time and computational power. However, it can effectively simulate complex 73 
nonlinear relationships between parameters. In detail, two-layer networks with sigmoid hidden 74 
neurons and linear output neurons were used (Figure 1).  75 

 

Figure 1. A two-layer network with sigmoid hidden neurons and linear output neurons  76 
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The number of hourly concentrations that were used for the models were those for which none 77 
of the stations had a missing value. The training of the networks was performed with the Levenberg-78 
Marquardt backpropagation algorithm. The dataset was divided into three subsets used for training, 79 
validation and testing randomly and each subset corresponded to specific percentages of the original 80 
data (70% training, 15% validation, 15% testing). Depending on the pollutant, the number of data 81 
points used for the subsets was different and is presented in Table 2. The network architecture 82 
includes a number of inputs equal to the number of all stations minus the target station (13 for NO2, 83 
12 for O3, 10 for PM10, 5 for PM2.5 and 5 for SO2), while the output is always one (target station). 84 
Regarding the number of neurons in the hidden layer, the performance of each network was 85 
evaluated by using the Mean Absolute Error (MAE) statistical criterion [14-18], which is calculated 86 
by using the following equation: 87 

 
MAE =

1

𝑛
∑|𝐸𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 

 

(1) 

where E denotes the estimated concentration, O the observed concentration and n the number of data 88 
points. Lower MAE values illustrate the optimum performing network. Five runs were performed 89 
for all schemes and for hidden layer neurons that ranged from 1 to 40. The best performing networks 90 
and their architecture are presented in Table 3. By using these selected SNN models for the 91 
corresponding inputs of 2018, the gaps in each station and pollutant were filled.  92 

3. Results 93 

A total of 12,526 missing values were estimated and the percentage of gaps that were filled out 94 
in each station was above 40% for PM10 and PM2.5, above 20% for O3 and SO2 and above 15% for NO2. 95 
Regarding O3 and NO2 where the percentage of interpolated values is lower, it needs to be considered 96 
that they had a higher number of input stations and thus, the criterion that none of the inputs should 97 
have a missing value for each gap of the target station, was more difficult to fulfill. Table 1 presents 98 
in detail the gaps originally and after the interpolation, as well as the percentage of missing values 99 
that were estimated. 100 

 101 

Table 1. Number of missing values (gaps) during 2018, for the original and spatially interpolated 102 
dataset 103 

 Original gaps Gaps after interpolation Difference Estimated percentage (%) 

NO2 13,253  11,145 2,108 15.91 

O3 10,814  7,961 2,853 26.38 

PM10 7,182  3,948 3,234 45.03 

PM2.5 4,558 2,524 2,034 44.62 

SO2 7,043 4,746 2,297 32.61 

 104 
The number of data points for the training, validation and testing subsets and for each pollutant 105 

are presented in Table 2. Pollutants with lower number of input stations are associated with higher 106 
data points numbers per station (smaller probability for all the stations to have a missing value at the 107 
same time). However, more stations (NO2, O3) provide additional data points. NO2 and PM2.5 are the 108 
pollutants which provided more data for training, validation and testing purposes. 109 
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Table 2. Number of data points distributed to the training, validation and testing subset for the 2016-110 
2017 time period 111 

 Training Validation Testing Total 

NO2 47,151  10,101  10,101  67,353  

O3 25,272  5,412  5,412  36,096  

PM10 13,410  2,880  2,880  19,170  

PM2.5 37,785 8,100  8,100  53,985  

SO2 13,925 3,080  3,080  20,085  

The architecture of the optimum performance models is presented in Table 3. The hidden 112 
neurons number is an average of all the stations for each pollutant. The MAE average values 113 
(measured in the same units as the concentrations of the pollutants, μg/m3) in these cases are also 114 
included. However, all pollutant-specific networks have the same number of inputs and all networks 115 
have a single output (the target station). The average hidden neuron value ranges from 21.7 to 25.2 116 
which reveals that the models are at an almost equal complexity level.  117 

Table 3. Number of input, hidden (average) and output neurons as well as MAE (average), mean 118 
concentration values and percentage of error (MAE to mean concentration) for the best performing 119 
models and the 2016-2017 time period 120 

 Input neurons Hidden Output MAE Mean Error (%) 

NO2 13 21.7 1 5.80 32.70 17.74 

O3 12 22.3 1 6,86 58.86 11.65 

PM10 10 23.6 1 5.71 29.53 19.34 

PM2.5 5 25.2 1 5.17 23.81 21.71 

SO2 5 22.5 1 1.89 6.06 31.19 

4. Discussion 121 

According to Table 3 results, it can be concluded that the error percentage is higher when the 122 
number of input stations is lower and subsequently the information provided for training is more 123 
limited. O3 is an exception to this statement because although the number of input stations is 12 124 
versus 13 for NO2 and correspondingly the available data points are nearly half, the error percentage 125 
is considerably lower. This can be explained by examining other behavioral characteristics of this 126 
pollutant (differences in mean values among stations, more easily identifiable patterns in datasets 127 
etc.). When comparing PM2.5 and SO2, where the input neurons are five for both, the prediction 128 
performance for SO2 is lower, possibly due to the smaller number of data points, according to Table 129 
2 (PM2.5 has nearly three times more data points). Different approaches to evaluate the performance 130 
of the models can be followed (scatter diagrams, correlation metrics, etc.) as well as more types of 131 
similar complexity neural network models can be examined. 132 

5. Conclusions 133 

This study applied SNN models as a tool for point spatial interpolation of air quality parameters, 134 
using data from an air quality monitoring network located at a densely populated urban area. Five 135 
air quality parameters were selected (PM10, PM2.5, NO2, O3 and SO2), due to their importance in the 136 
field of air quality indexes and more specifically, based on the EAQI (proposed by EEA). The results 137 
highlight that the models’ performance is significantly affected by the density of the air quality 138 
monitoring network (number of stations and data points per station) as well as the specific patterns 139 
that characterize each pollutant’s concentrations. The training dataset is crucial for the networks’ 140 
development and needs to be carefully selected in order to provide adequate information which will 141 
augment the networks’ generalization ability. This work can be utilized as an alternative for 142 
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commonly used spatial interpolation methods in the field of air quality and further improvements 143 
can be made by using more advanced networks and/or adding meteorological parameters as inputs. 144 
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