

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 THE INTARRATIONALE Sensors for Monitoring Industrial Bioreactors **Contraction of Optical Fiber Sensors** for Monitoring Industrial Bioreactors University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares et al., Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Technical and Economic Viability Analysis of Optical Fiber Sensors for Monitoring Industrial **Bioreactors** ECSA-7 15-30 November 2020
 **Technical and Economic Viability Analysis of

Optical Fiber Sensors for Monitoring Industrial

Bioreactors**

Marco César Prado Soares 1,*, Thiago Destri Cabral ¹, Beatriz Ferreira Mendes 1,2, **Technical and Economic Viability All Optical Fiber Sensors for Monitoring
Bioreactors
Bioreactors
Discrement Prado Soares 1.*, Thiago Destri Cabral 1, Beath
Vitor Anastacio da Silva ², Elias Basile Tambourgi ² an
pol** Conomic Viability Analysis of

sors for Monitoring Industrial

Bioreactors

Thiago Destri Cabral ¹, Beatriz Ferreira Mendes ^{1,2}

Elias Basile Tambourgi ² and Eric Fujiwara ¹

ering, University of Campinas, São Paul **Analysis of

analysis of

industrial

atriz Ferreira Mendes ^{1,2},

and Eric Fujiwara ¹

pinas, São Paulo , Brazil**

Marco César Prado Soares $1, *$, Thiago Destri Cabral ¹, Beatriz Ferreira Mendes $1, 2$, \mathcal{L} tri Cabral ¹, Beatriz Ferreira Mendes ^{1,2},
le Tambourgi ² and Eric Fujiwara ¹
versity of Campinas, São Paulo , Brazil
ersity of Campinas, São Paulo, Brazil
ECSA-7 2020 – marcosoares.feq@gmail.com 1

1 School of Mechanical Engineering, University of Campinas, São Paulo , Brazil

2 School of Chemical Engineering, University of Campinas, São Paulo, Brazil

1. Introduction

Bioprocesses:

sensors

- Bioprocesses at all, Technology of Photonic Materials and Devices

Saires at al., Technology of District Bluesdard

Saires at al., Technology Industrial Bluesdard
 1. Introduction

Bioprocesses:

 Relevant to different **1. Introduction
Discrete Monitoring Industrial Bloreadors
Relevant to different industries: pharmaceut
biomedic and food [1].**
These processes are still difficult to monitor. **1. Introduction

Bioprocesses:**

• Relevant to different industries: pharmaceutics, energy,

biomedic and food [1].

• These processes are still difficult to monitor.

• Assessment is usually performed by techniques unsui
-
- **Bioprocesses:**

 Relevant to different industries: pharmaceutics, energy, biomedic and food [1].

 These processes are still difficult to monitor.

 Assessment is usually performed by techniques unsuitable for automat **oprocesses:**
Relevant to different industries: pharmaceutics, energy,
biomedic and food [1].
These processes are still difficult to monitor.
Assessment is usually performed by techniques unsuitable for
automatic control, Relevant to different industries: pharmaceutics, e
biomedic and food [1].
These processes are still difficult to monitor.
Assessment is usually performed by techniques unsuitak
automatic control, like: microscopes, centri
 ECSA-7 2020 – marcosoares.feq@gmail.com
ECSA-7 2020 – marcosoares.feq@gmail.com
ECSA-7 2020 – marcosoares.feq@gmail.com
ECSA-7 2020 – marcosoares.feq@gmail.com

[1] Shuler, M.; Kargi, F. Bioprocess Engineering. Basic Concepts. Second Edition. Prentice Hall: 2002. [2] Bailey, J.; Ollis, D. Biochemical Engineering Fundamentals. McGraw-Hill: 1986. [3] Soares, M.C.P. et al. Sensors 2019, 19, 2493. doi:10.3390/s19112493.

1. Introduction

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber
 1. Introduction

Traditional procedures for analysis:

 Traditio University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Material Bluesdates
 1. Introduction

Traditional procedures for analysis:

• Traditional procedures i **for the broad of the broth, or evaluating the glucose concentration with colorimetric assays [4]. 1. Introduction

aditional procedures for analysis:**

Traditional procedures include the quantifying

from the broth, or evaluating the glucose con

colorimetric assays [4].

They are based on manual and time-consuming pr **Traditional procedures for analysis:**

• Traditional procedures include the quantifying of the dry mass

from the broth, or evaluating the glucose concentration with

colorimetric assays [4].

• They are based on manual a
- Me-consuming procedures [2].
Aldrich. Glucose (GO) Assay Kit. Available online: https://www.sigmaaldrich.com
igma/gago20 (accessed on 6 August 2020).
ECSA-7 2020 marcosoares.feq@gmail.com 3

[4] Merck Sigma Aldrich. Glucose (GO) Assay Kit. Available online: https://www.sigmaaldrich.com /catalog/product/sigma/gago20 (accessed on 6 August 2020).

1. Introduction

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 1. Introduction

T University of Campinas – UNICAMP. Laboratory of Photonic Materials and Devices

Somes et al., Technical and Eccentric Wabity Analysis of Optical Fiber
 1. Introduction

Traditional procedures for analysis:

• More accura University of Campings - UNICAMP, Laboratory of Photonic Materials and Devices

Scares et al., Technologian Chromatography (HPLC);
 1. Introduction

aditional procedures for analysis:

More accurate techniques, capable o **1. Introduction**
 1. Introduction
 1. Introduction
 1. Introduction
 1. Introduction
 1. Introduction
 1. Introduction

More accurate techniques, capable of evaluating multiple parameters: high

performance li (ELISA). **1. Introduction**
 Traditional procedures for analysis:

• More accurate techniques, capable of evaluating multiple parameters: high

performance liquid chromatography (HPLC); gas chromatography coupled to

mass spectrom **aditional procedures for analysis:**
More accurate techniques, capable of evaluating r
performance liquid chromatography (HPLC); gas ch
mass spectrometry (GC-MS); and the enzyme-link
(ELISA).
They are also widely applied t ■ Require expensive and bulky instrumentation, highly specialized technicians,

Nore accurate techniques, capable of evaluating multiple parameters: high

performance liquid chromatography (HPLC); gas chromatography coupl More accurate techniques, capable of evaluating multiple parameters: high
performance liquid chromatography (HPLC); gas chromatography coupled to
mass spectrometry (GC-MS); and the enzyme-linked immunosorbent assay
(ELISA)
-
- cal and biochemical analysis, since they
entation, highly specialized technicians,
p perform field analysis [3,5].
alla, V.K. In Electrochemical Sensors, Biosensors and their Biomedical Applications;
Wang, J. Ed.; Elsevier

[5] Ju, H.; Kandimalla, V.K. In Electrochemical Sensors, Biosensors and their Biomedical Applications; Zhang, X.; Ju, H.; Wang, J. Ed.; Elsevier: 2008.

1. Introduction

University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Sons of *Binsors for Monitoring Industrial Bioreactors*

Use of Sensors for Fermentation Monitoring:

• The best alternative; University of Campinas – UNICAMP, Laboratory of Photonic Materials and I

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors

 **1. Introduction
Use of Sensors for Fermentation Monitorin
• The best alternative;
• The use of in-line sensors allow:
• obtaining useful data with shorter operation t**

-
- -
- **1. Introduction

2. of Sensors for Fermentation Monitoring:**

The best alternative;
 a best alternative; **Example 18 Sensors for Fermentation Monitoring:**
 Example 18 Set alternative;
 Example 18 Set alternative
 Example 18 Set alternative set alternative set alternative solution only for the monitoring, but also for th preliminary screening prior to the investment on more precise
preliminary screening prior to the investment on more precise
equipment [3,5]. Expect that the sensors allow:

Expect the sensors allow:

expect the sensors allow:

detaining useful data with shorter operation

obtaining useful not only for the monitorin
 preliminary screening prior to the investr
 rter operation times,

e monitoring, but also for the

b the investment on more precise

ECSA-7 2020 – marcosoares.feq@gmail.com

5

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors Sensors for Monitoring Industrial Bioreactors **Contraction of Optical Fiber Sensors** for Monitoring Industrial Bioreactors University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 1. Introduction
 Soares et al., Technical and Economic Viability Analysis of Optical Fiber

1. Introduction

University of Campinas – UNICAMP, Laboratory of Pho

Soares *et al.*, Technical and Economic Viability Ana

Sensors for Monitoring Industrial Bior
 1. Intro
 0 Biocompatible;

• Immune to electromagnetic int

-
- Examples Sensors for Montoring Industrial Bloreactors
 1. Introduction
 9. Biocompatible;

 Immune to electromagnetic interference;

 Show chemical and thermal stability;
-
- **1. Introduction

Optical Fiber Sensors (OFSs):**

 Biocompatible;

 Immune to electromagnetic interference;

 Show chemical and thermal stability;

 Show lower fabrication costs, being suitable for the **Optical Fiber Sensors (OFSs):**
● Biocompatible;
● Immune to electromagnetic interference;
● Show chemical and thermal stability;
● Show lower fabrication costs, being suitable for the mass-
fabrication of devices [3,6,7] Fried: The Poethors (OTDS).
Biocompatible;
Immune to electromagnetic interference;
Show chemical and thermal stability;
Show lower fabrication costs, being suitable fi
fabrication of devices [3,6,7]. lity;

being suitable for the mass-
 $\frac{69 \text{ Li}, X. et al. Sens. Act. B: Chern. 2018, 269, 103-109.}{[7] Gorg. C. et al. Lab Chip 2017, 17, 3431-3436.}$

ECSA-7 2020 – marcosoares.feq@gmail.com 6

[6] Li, X. et al. Sens. Act. B: Chem. 2018, 269, 103-109. [7] Gong, C. et al. Lab Chip 2017, 17, 3431–3436.

1. Introduction

sensol

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 1. Introduction
 University of Campinas – UNICAMP. Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Wabity Analysis of Optical Fiber
 1. Introduction

Objective of this Work

• Analysis of the technical University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Biorectors
 1. Introduction

An **1. Introduction**
 **1. Introduct 1. Introduction

Objective of this Work**

• Analysis of the technical and economic viability of implementing fiber optics

fed-batch ethanol fermentation systems.

• It is compared to traditional ELISA and HPLC systems.
 by jective of this Work

Analysis of the technical and economic viability of implementing fiber opt

fed-batch ethanol fermentation systems.

• It is compared to traditional ELISA and HPLC systems.

Fed-batch is very pre
	-
-
- **Ethanol production and acconomic viability of implementing fiber optics**

 Analysis of the technical and economic viability of implementing fiber optics

 It is compared to traditional ELISA and HPLC systems.

 Fed-\n Analysis of the technical and economic viability of implementing fiber optics fed-batch ethanol fermentation systems.\n It is compared to traditional ELISA and HPLC systems.\n Fed-batch is very prevalent in different fermentation industries.\n Ethanol production represents a major sector of the Brazilian economy, with an annual production in excess of 35 billion liters [8,9].\n A simple fiber sensing system is proposed and the advantages of real-time process control are verified.\n\n<p>1 [8,5007, G.M.: Volotia, R.L.: Joly, C.A.: Veridade, LM. Ed. Bio energy and Sixdentability: orbiging the gross control are verified.</p>\n<p>1</p>\n<p>1</p>\n<p>1</p>\n<p>1</p>\n<p>1</p>\n<p Fed-batch ethanol fermentation systems.

• It is compared to traditional ELISA and HPLC systems.

Fed-batch is very prevalent in different fermentation ind

Ethanol production represents a **major sector of the Bra**
 annua Ecrear of the Brazilian economy, with an
 n liters [8,9].

Nosed and the advantages of real-time

Mictoria, R.L.; Joly, C.A.; Verdade, L.M. Ed. *Bioenergy and Sustentability: bridging the*

PESP - BIOEN - BIOTA - FAPESP Frement fermentation industries.

Frement fermentation industries.
 a major sector of the Brazilian economy, with **an

35 billion liters** [8,9].

I is proposed and the advantages of real-time

(B) Souza, G.M.: Victoria,
-

[8] Souza, G.M.; Victoria, R.L.; Joly, C.A.; Verdade, L.M. Ed. Bioenergy and Sustentability: bridging the [9] International Sugar Association (ISO), ISO Ethanol Yearbook 2019, ISO 2020.

1. Introduction

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 Photonic Industry F University of Campinas – UNICAMP. Laboratory of Photonic Materials and Devices

Sonras et al., Technical and Economic Wability Analysis of Opitcal Fiber
 1. Introduction

Photonic Industry Facts

• Important economic asp University of Campings - UNICAMP, Laboratory of Photonic Materials and Devices

Scares at al., Technologian Chaustral Blockaclons
 1. Introduction

Otonic Industry Facts

Important economic aspects regarding the photonic **1. Introduction**
 2. Introduction
 2. Informal example Facts
 9. Important economic aspects regarding the photonic industry itself make it
 4. In the United Kingdom (2017), it was estimated that the photonic indus **1. Introduction**
 2. Introduction
 2. Introduction
 2. Interpretative for new investments such as the proposed in this work.
 1. the United Kingdom (2017), it was estimated that the photonic indust

• contributed **Stonic Industry Facts**

mportant economic aspects regarding the photonic industry itself

ttractive for new investments such as the proposed in this work.
 1 the United Kingdom (2017), it was estimated that the photonic **Example 111003619 Practs**
 Employed moreon approximate than 65,000 people;
 **EMPLONE MOREON MOREON CONTAINS SET AND MOREON MOREON CONTINUES ON THE United Kingdom (2017), it was estimated that the photonic in

● contrib The United Kingdom (2017)**, it was estimated that the photonic industry itself make it
 1. the United Kingdom (2017), it was estimated that the photonic industry:

● contributed with more than **£12.9 billion**;

● with
- -
	-
	-
	-

n;

ed to exportation [10].

ECS Research Centre (Part of the Russell Group). Key photonics industry facts (June

philne: https://www.orc.solon.ac.uk/who-we-are (accessed on 14 August 2020).

ECSA-7 2020 – marcosoares.feq@ [10] Optoelectronics Research Centre (Part of the Russell Group). Key photonics industry facts (June 2017). Available online: https://www.orc.soton.ac.uk/who-we-are (accessed on 14 August 2020).

1. Introduction

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 Photonic Industry F University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Source et al., Technical and Economic Wables of Optical Fiber
 1. Introduction

Photonic Industry Facts

• According to Gong et al. [7], fib University of Campinas - UNICAMP, Laboratory of Photoine Mehinia and Devices

Source et al. Technical and Economic Visibility Analysis of Optical Fiber
 1. Introduction:

According to Gong et al. [7], fiber optic sensors **1. Introduction**
 1. Introduction
 2. Common optical fibers may be produced with lengths as high as ~50 km;
 4. Common optical fibers may be produced with lengths as high as ~50 km;
 9. Due to the economies of sca **1. Introduction**
 1. Introduction
 2. Consider to Gong et al. [7], fiber optic sensors are also advantageous in terms
 4. The low costs involved in the waveguide production:

• Common optical fibers may be produced
	-
	-
- **1. THEFOCUCEFT

2. Example 1.1** per meters of the low costs involved in the waveguide production:

 Common optical fibers may be produced with lengths as high as ~50 km;

 Due to the economies of scale, the average fab Find the mattery **Facts**
ording to Gong et al. [7], fiber optic sensors are also advantageous in terms
e low costs involved in the waveguide production:
Common optical fibers may be produced with lengths as high as ~50 km ording to Gong et al. [7], fiber optic sensors are also advantageous in terms

in **common optical fibers may be produced with lengths as high as ~50 km;**

Due to the economies of scale, the average fabrication cost is in t of the **low costs involved in the waveguide production:**

● Common optical fibers may be produced with lengths as high as ~50 km;

● Due to the economies of scale, the average fabrication cost is in the order of **US\$**
 0
-

Sensors for Monitoring Industrial Bioreactors **Contraction of Optical Fiber Sensors** for Monitoring Industrial Bioreactors University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 GOBOYAL Ethanol Eor Soares et al., Technical and Economic Viability Analysis of Optical Fiber

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 General Ethanol Fe 2. General Ethanol Fermentation Industry

In: Biofuel Production. Recent Developments and Prospects; Bernardes, M.A.S. Ed.; IntechOpen: Rijeka, Croatia, 2011. doi: 10.5772/17047

2. General Ethanol Fermentation Industry

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 2. General Ethanol University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Source of al., Technical and Economic Wability Analysis of Opical Fiber
 2. General Ethanol Fermentation Industry

Costs — **Preliminary Anal** University of Campins - UNICAMP, Change of Photon Mateural School of Campins and Devices

Surges of all Technical and Economic Values of Concert Fiber

Surges for Both that and the instrumented and

Once the main objective **2. General Ethanol Fermentation Industry**
Sts — **Preliminary Analysis**
Once the main objective is to analyze the gains involved in adopting an
instrumentation system, it is possible to admit that both the instrumented and **2. General Ethanol Fermentation Industry**

Soldicants and the main objective is to analyze the gains involved in adopt

Solnce the main objective is to analyze the gains involved in adopt

Solnt-instrumented processes pre **Samingther Community Community State of University Community Share (edse)**

Share the main objective is to analyze the gains involved in adopting an

strumented processes present same costs of:

• Acquisition of reactants STS — **Prellminary Analysis**

Dhoce the main objective is to analyze the gains inversity

neutricon-instrumented processes present same costs of:

• Acquisition of reactants and raw materials;

• Acquisition of utilities
	-
	- terials;
gy, steam, and cooling water);
ECSA-7 2020 marcosoares.feq@gmail.com 11
	-

2. General Ethanol Fermentation Industry

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 Costs Previously Ev University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al. Technical and Economic Wability Material Bioreccios
 2. General Ethanol Fermentation Industry

Costs Previously Evaluated

• V
	- Last figure, capable of processing 123.6 tons of sugarcane molasses/year.

	States figure, capable of processing 123.6 tons of sugarcane molasses/year.

	 Cost estimated for plant construction: USD 88.7 millions, whereas US **2. General Ethanol Fermentation Industry**
 Experiously Evaluated

	Frace et al. [12]: analyzed a fermentation process plant similar to the one of the

	figure, capable of processing 123.6 tons of sugarcane molasses/year.
 2. General Ethanol Fermentation
 Separate 316.19
 Separate 316.9
 Separate 316.9
 Separate 316.9
 Cost estimated for plant construction: USD 88.7 million

	are referent to the equipment acquisition (includin

	st **Solution Character Standard Standard Standard Standard Standard Standard Standard Standard Standard Costs: estimated for plant construction: USD 88.7 millions, whereas USD 39.4 millions are referent to the equipment acqui Previously Evaluated**

	ra et al. [12]: analyzed a fermentation process plant similar to the one of the

	figure, capable of **processing 123.6 tons of sugarcane molasses/year**.

	Cost estimated for plant construction: USD 88
		- sition (including a fermentor fabricated in

		.3 millions/per year for reactants and raw

		ions/year for the acquisition of utilities.

		et al. Ind. Crops Prod. 2016, 89, 478–485, 2016. doi: 10.1016/j.indcrop.2016.05.046.

		EC

[12] Vieira, J.P.F. et al. Ind. Crops Prod. 2016, 89, 478–485, 2016. doi: 10.1016/j.indcrop.2016.05.046.

2. General Ethanol Fermentation Industry

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 Costs Previously ev University of Campinas - UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Wability Material Bioreccios
 2. General Ethanol Fermentation Industry
 2. General Ethanol Fermentati Capable of processing 2205 tons of corn/day, producing 61 million gallons of
 Capable of processing 2205 tons of corn/day, producing 61 million gallons of

ethanol/year.

• Cost estimated for plant construction: USD 422. **2. General Ethanol Fermentation Industry**
Sts Previously evaluated
Humbird et al. [13]: analyzed the ethanol production from corn, for a plant
capable of processing 2205 tons of corn/day, producing 61 million gallons of **Example 12 Example 12 Set of the example 12 Set of the ethanol production from corn, for a plant apable of processing 2205 tons of corn/day, producing 61 million gallons of thanol/year.**
• Cost estimated for plant constru **Previously evaluated**

mbird et al. [13]: analyzed the ethanol production from corn, for a plant

able of processing 2205 tons of corn/day, **producing 61 million gallons of**
 anol/year.

Cost estimated for **plant constr** producting 61 million gallons of

r plant construction: USD 422.5 millions, whereas USD 154.5

nt to the equipment acquisition.

stimated in USD 65.64 millions/per year for reactants and raw

ion, and USD 4.72 millions/yea
	-
	-

: **USD 422.5 millions,** whereas **USD 154.5**
 acquisition.
 64 millions/per year for reactants and raw
 lions/year for the acquisition of **utilities.**
 onding, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, [13] Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Pretreatment and Enzymatic Hydrolysis of Corn Stover. U.S. Department of Energy: National Renewable Energy Laboratory (NREL), Golden, CO, USA. Technical Report NREL/TP-5100-47764, Contract No. DE-AC36-08GO28308, 2011.

2. General Ethanol Fermentation Industry University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 Costs Previously ev University of Campings - UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Testing are disconsite Membring Industrial Blowestors

2. General Ethanol Fermentation Industry

Costs Previously evaluated

• O

- -
- **2. General Ethanol Fermentation Industry**
Star Previously evaluated
The overall company cash flow;
• Impact the overall company cash flow;
• Do not directly affect the analysis of the viability in adopting instrumentation **2. General Ethanol Fermentation Industry

Star Previously evaluated**

Do not this basic costs are essentially constant, they:

• Impact the overall company cash flow;

• Do not directly affect the analysis of the viabilit **Example 12 Server and Example 12 Server and Server Algebra 2013**
 Example 2013 Server Algebra 2014

Impact the overall company cash flow;
 Do not directly affect the analysis of the viabili

Instrumentation strategy.

- **Costs Previously evaluated**

 Once this basic costs are **essentially constant**, they:

 Impact the overall company cash flow;

 Do not directly affect the analysis of the viability in adopting a new

instrumentation s Once this basic costs are **essentially constant**, they:

• Impact the overall company cash flow;

• Do not directly affect the analysis of the viability in adopting a new

instrumentation strategy.

It is important to eval Once this basic costs are **essentially**

• Impact the overall company cash flow;

• Do not directly affect the analysis

instrumentation strategy.

It is important to evaluate if

undesirable disturbances may resu

cash fl is of the viability in adopting a new
f the premature detection of
esult on real gains, affecting the
ECSA-7 2020 – marcosoares.feq@gmail.com 14

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers Shares et al., Technical and Economic Materials and Devices

Sons et al., Technical and Economic Materials and Devices
 Benefits of Real-Time Monitoring over HPLC

• To demonstrate the benefits of monitoring over HPLC

• Benefits of Real-Time Monitoring of Fed-Batch Bioreactors
 Benefits of Real-Time Monitoring of Fed-Batch Bioreactors
 Parameters and the benefits of Real-Time Monitoring over HPLC

• To demonstrate the benefits of moni University of Campinsa - UNICAMP, Laboratory of Photonic Materials and Dowess
 Conduction of a simulation study of Fed-Batch Bioreactors
 Conduction of a simulation study of a fed-batch reactor subjected to a

disturba

- **3. Real-time Monitoring of Fed-Batch Bioreactors**
 with Optical Fibers
 Benefits of Real-Time Monitoring over HPLC

 To demonstrate the benefits of monitoring ethanol bioreactors in real time:

conduction of a simul
-

Benefits of Real-Time Monitoring over HPLC

• To demonstrate the benefits of monitoring ethanol bioreactors in real time:

conduction of a simulation study of a fed-batch reactor subjected to a

disturbance.

• The mode To demonstrate the benefits of monitoring ethanol bioreactors in real time:
conduction of a simulation study of a **fed-batch reactor subjected to a**
disturbance.
The model is derived from the general fermentative reaction To demonstrate the benefits of monitoring ethanol bioreactors in real time:

conduction of a simulation study of a **fed-batch reactor subjected to a**

disturbance.

The model is derived from the general fermentative react EFIMENTALIVE TEACTION:
 $(X + \Delta X)$

In (*Saccharomyces cerevisiae*), *S* is the

ucts concentration (ethanol) and ΔX an

rroduction. [2,3,14].

[14] Doran, P. *Bioprocess Engineering Principles*, 2nd ed; Elsevier, 2013.

[14] Doran, P. Bioprocess Engineering Principles, 2nd ed; Elsevier, 2013.

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Sensors for Monitoring Material Bioreactors
 Benefits of Real-Time Monitoring over HPLC

• Applying the Monod model [2,14], we arrive at the **Applying the Monod model [2,14], we arrive at the set of Equations (1) through (4) [15]:**
 applying the Monod model [2,14], we arrive at the set of Equations (1) through (4) [15]:
 a
 a Applying the Monod model [2,

$$
\frac{dV}{dt} = F \Rightarrow V = V_0 + F(1)
$$

$$
\frac{dX}{dt} = \mu X - \frac{FX}{V} \tag{2}
$$

$$
\frac{dP}{dt} = q_p X - \frac{FP}{V} \tag{3}
$$

$$
\frac{dP}{dt} = \mu X - \frac{FP}{V} \text{ (2)}
$$
\n
$$
\frac{dP}{dt} = q_p X - \frac{FP}{V} \text{ (3)}
$$
\n
$$
\frac{dS}{dt} = -\mu_s X + \frac{F(S_F - S)}{V} \text{ (4)}
$$
\n[15] Soares, M.C.P. et al. Blucher Chem. Eng. Proc. 2018, 1, 2010-2014. doi: 10.5151/cobeq2018-PT.0532. ECSA-7 2020 – macrosoares.feq@gmail.com 16

[15] Soares, M.C.P. et al. Blucher Chem. Eng. Proc. 2018, 1, 2010-2014. doi: 10.5151/cobeq2018-PT.0532.

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers Benefits of Real-Time Monitoring over HPLC
 $\frac{dV}{dt} = F \Rightarrow V = V_0 + F(1)$

Sons for Nonting **Industrial Since Construction**

Sensor for Monitoring of Fed-Batch Bioreactors

Benefits of Real-Time Monitoring over HPLC
 $\frac{dV}{dt}$ Fed-Batch Bioreactors
Fibers
Thers
Salism and Devices
Fibers
HPLC
Salism and Devices
HPLC
Salism and Devices
In the specific rate of substrate
ponsumption;
Figures and the specific rate of product formation. $\mathbf{F}^{\text{L Materials and Devices}}$
 of Grightial Fiber
 cal Fibers
 er HPLC

• μ_s = specific rate of substrate

• μ_s = specific rate of substrate

• q_p = specific cell growth rate;

• q_p = specific rate of product formati Fed-Batch Bioreactors

Fibers
 LIPLC
 $s = \text{specific rate of substrate}$
 $p = \text{specific cell growth rate}$;
 $p = \text{specific rate of product formation.}$
 $p \text{ in fed-batch operation mode:}$
 \cdot initial concentrations X_0, P_0 and S_0 ;
 \cdot initial volume of fermentation broth **of Fed-Batch Bioreactors**
 cal Fibers
 er HPLC
 e μ_s = specific rate of substrate

consumption;
 e μ = specific cell growth rate;
 e q_p = specific rate of product formation.
 on fed-batch operation mod Fibers
 Fibers
 Fibers
 Figure 1997
 Figure 199

$$
\frac{dV}{dt} = F \Rightarrow V = V_0 + F(1)
$$

$$
\frac{dX}{dt} = \mu X - \frac{FX}{V} \tag{2}
$$

$$
\frac{dP}{dt} = q_p X - \frac{FP}{V} \tag{3}
$$

$$
\frac{dS}{dt} = -\mu_s X + \frac{F(S_F - S)}{V} \tag{4}
$$

- $0 + F(1)$ consumption; μ_s = specific
	-
	- q_p = specific rate of product formation.
	- -
- **Fibers**
 Figure 1988
 Figure 1988
 Figure 1989
 V_0 ;
- initial concentrations X_0 , P_0 and S_0 ;
• initial volume of fermentation broth
 V_0 ;
• A constant feed flow F supplies the
reactor with fresh substrate with
concentration S_F .
or at 33 °C (temperature for maxim • A constant feed flow supplies the = specific rate of substrate
umption;
pecific cell growth rate;
specific rate of product formation.
d-batch operation mode:
initial concentrations X_0 , P_0 and S_0 ;
initial volume of fermentation broth
 V_0 ;
A cons q_p = specific rate of product formation.

On fed-batch operation mode:

• initial concentrations X_0 , P_0 and S_0 ;

• initial volume of fermentation broth
 V_0 ;

• A constant feed flow F supplies the

reactor wi

 $\frac{dX}{dt} = \mu X - \frac{FX}{V}$ (2)
 $\frac{dY}{dt} = \mu_X - \frac{FX}{V}$ (2)
 $\frac{dP}{dt} = q_p X - \frac{FP}{V}$ (3)
 $\frac{dS}{dt} = -\mu_s X + \frac{F(S_F - S)}{V}$ (4)

Simulation parameters for a fed-batch reactor at 33 °C (temperature for maximum cell

growth [3]): $X_$ $rac{dA}{dt} = \mu X - \frac{F A}{V}$ (2)
 $\frac{dP}{dt} = q_p X - \frac{FP}{V}$ (3)
 $\frac{dS}{dt} = -\mu_s X + \frac{F(S_F - S)}{V}$ (4)

Simulation parameters for a fed-batch reactor at 33 °C

growth [3]): $X_0 = 50 \text{ gL}^{-1}$, $P_0 = 0$, $S_0 = 30 \text{ gL}^{-1}$, $V_0 = 1 \text{ L$, P_0 = 0, S_0 = 30 gL⁻¹, V_0 = 1 L, F = 0.66 Lh⁻¹ and S_F = 192 gL⁻¹. - $\frac{FA}{V}$ (2)

• q_p = specific rate of p

• On fed-batch operation

• initial concentration

• initial volume c
 $\frac{V(S_F - S)}{V}$ (4)

• A constant feed

reactor with f

concentration S_f

a fed-batch reactor at 33 °C 2)

• q_p = specific rate of product for

• On fed-batch operation mode:

• initial concentrations X_0 , P

• initial volume of ferment
 V_0 ;

• A constant feed flow F s
 S)

(4)

• reactor with fresh sub:

conc

Sensors for Monitoring Industrial Bioreactors **Contraction of Optical Fiber Sensors** for Monitoring Industrial Bioreactors University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber
 Dividends Soares of Analysis of Optical Fiber
 Dividends Soares Soares et al., Technical and Economic Viability Analysis of Optical Fiber

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers

sensors

- es
 Batch Bioreactors
 FS

 Without real-time monitoring,

(such as using HPLC for process

control): *X* follows the red curve

and *P* the pink curve; **Example 12 Separation**
 Solution Bioreactors

(such as using HPLC for process

control): *X* follows the red curve

and *P* the pink curve;

If in-line real-time instrumentation **incomposity of the Sing Control):** X follows the red curve

(such as using HPLC for process

control): X follows the red curve

and P the pink curve;

If in-line real-time instrumentation

can detect the disturbanc
- **Batch Bioreactors**
 Pand the pink curve;

(such as using HPLC for process

control): *X* follows the red curve

and *P* the pink curve;
 Control in the pink curve;
 Control is restored to the original levels

just **in the disturbance of the disturbance and** *B* follow the disturbance and *P* the pink curve;

If in-line real-time instrumentation

can detect the disturbance and S_F

is restored to the original levels

just after 20 **is respect to the original levels to the original levels in the original levels (such as using HPLC for process control):** X **follows the red curve and** P **the pink curve;
If in-line real-time instrumentation can detect itch Bioreactors**

S

Without real-time monitoring,

(such as using HPLC for process

control): X follows the red curve

and P the pink curve;

If in-line real-time instrumentation

can detect the disturbance and S_F

i Without real-time monitoring,
(such as using HPLC for process
control): *X* follows the red curve
and *P* the pink curve;
If in-line real-time instrumentation
can detect the disturbance and S_F
is restored to the origina **FS**

• Without real-time monitoring,

(such as using HPLC for process

control): *X* follows the red curve

and *P* the pink curve;

• If in-line real-time instrumentation

can detect the disturbance and S_F

is restore Without real-time monitoring,

(such as using HPLC for process

control): *X* follows the red curve

and *P* the pink curve;

If in-line real-time instrumentation

can detect the disturbance and S_F

is restored to the o
- Follow the black and blue

branching curves, respectively.
 EXECUTE: $\frac{11.6\%}{\text{detection}}$
 EXECUTE: $\frac{11.6\%}{\text{detection}}$
 EXECUTE: $\frac{1}{10}$
 EXECUTE: $\frac{1}{10}$
 EXECUTE: $\frac{1}{10}$
 EXECUTE: $\frac{1}{10}$
 EXECUT cells and 13.5% reduction in the members of such as using HPLC for process control): *X* follows the red curve and *P* the pink curve;
If in-line real-time instrumentation can detect the disturbance and S_F is **restored** control): *X* follows the red curve
control): *X* follows the red curve
if in-line real-time instrumentation
can detect the disturbance and S_F
is restored to the original levels
just after 20 minutes: *X* and *P*
fo and P the pink curve;
and P the pink curve;
If in-line real-time instrumentation
can detect the disturbance and S_F
is restored to the original levels
just after 20 minutes: X and P
follow the black and blue
branching cu F in-line real-time instrumentation
If in-line real-time instrumentation
can detect the disturbance and S_F
is restored to the original levels
just after 20 minutes: *X* and *P*
follow the black and blue
branching cu the minimizer and the disturbance and S_F
is restored to the original levels
just after 20 minutes: *X* and *P*
follow the black and blue
branching curves, respectively.
After a 12 hours cycle: 11.6%
reduction in the con

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber
 3. Real-time Monitoring Industrial Bioreactors
 19. Real-time Mo Beach of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
 1997 - The Form of Science of Consideration
 1997 - The Form of Fed-Batch Bioreactors

Instrumentation Setup and Costs

• For instrumentation c

[16] Soares, M. C. P. et al. Sensors 2020, 20, 707. doi: 10.3390/s20030707

[17] Soares. M.C.P.et al. Proc. 26th International Conference on Optical Fiber Sensors 2018. doi: 10.1363/OFS.2018.ThE39.

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Ecosymptem Fiber
 3. Real-time Monitoring of Fed-Batch Bioreact
 with Optical Fibers
 Instrumentation Setup University of Campinas - UNICAMP. Laboratory of Photonic Materials and Devices
 3. Real-time Monitoring of Fed-Batch Bioreactors
 11. Instrumentation Setup and Costs

• Light from a 1310 nm laser is guided to the biore University of Campinas – UNICAMP. Laboratory of Photonic Materials and Devices

Soarce of al. Technological from the fermentation broth.
 Real-time Monitoring of Fed-Batch Bioreact
 with Optical Fibers

strumentation S **B. Real-time Monitoring of Fed-Batch Bioreactors**
 Instrumentation Setup and Costs

• Light from a 1310 nm laser is guided to the bioreactor by a single mode optical

fiber submerged in the fermentation broth.

• The l **Couplem Control Cont**

-
-

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Material Bioreactors
 3. Real-time Monitoring of Fed-Batch Bioreaction
 with Optical Fibers
 Instrum BEREAD THE INTENSITY OF THE INTENSITY OF THE INTENSITY OF THE INTERNATIONAL IS SERIES WITH OPICIAL FIBERS
 3. Real-time Monitoring of Fed-Batch Bioreactors
 Instrumentation Setup and Costs

• The intensity of the re **Example 2** Technical and Economic Wability Analysis of Optical Fiber
 **Solitis Art A. Technical and Economic Wability Analysis of Optical Fiber

Solitis Art A. Technical and Economic Wability Analysis of Optical Fiber
**

$$
I_R = k \cdot I_0 \left[\frac{\left(n_f - n_b \right)}{\left(n_f + n_b \right)} \right]^2 \tag{5}
$$

Instrumentation Setup and Costs

• The intensity of the reflected signal is given by Equation (5)

equation [18]:
 $I_R = k \cdot I_0 \left[\frac{(n_f - n_b)}{(n_f + n_b)} \right]^2$ (5)

• I_R is the reflected signal intensity, I_0 is the emitted l **Costs**

is given by Equation (5), which is Fresnel's
 $\left(\frac{n_f - n_b}{n_f + n_b}\right)^2$ (5)

is the emitted light intensity, *k* is a coupling

losses, and n_f and n_b are the refractive

entation broth, respectively. The intensity of the reflected signal is given by Equation (5), which is Fresnel's
equation [18]:
 $I_R = k \cdot I_0 \left[\frac{(n_f - n_b)}{(n_f + n_b)} \right]^2$ (5)
 I_R is the reflected signal intensity, I_0 is the emitted light intensity, k is coefficient that accounts for optical losses, and n_f and n_b are the refractive which is Fresnel's
sity, *k* is a coupling
are the refractive
ly. The intensity of the reflected signal is given by Equation (5), which is Fresnel's
equation [18]:
 $I_R = k \cdot I_0 \frac{\left(n_f - n_b\right)}{\left(n_f + n_b\right)}^2$ (5)
 I_R is the reflected signal intensity, I_0 is the emitted light intensity, k is $\left[\frac{n_b}{m_b}\right]$ (5)

he emitted light intensity, *k* is a coupling

sses, and n_f and n_b are the refractive

ation broth, respectively.

EcsA-7 2020 – marcosoares.feq@gmail.com 21

[18] Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 1st ed; J. Wiley & Sons. 1991. doi: 10.1002/0471213748

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Material Bioreactors
 3. Real-time Monitoring of Fed-Batch Bioreactor

With Optical Fibers

Instrumenta **BEREVIS DESCRIPTION AND AS DESCRIPTION AND AS DEMONSTRATED BEFORE AN INCREDIBLE SCRIPTION CONCENTRATED SETTING MODEL CONCENTRATED SETTING MODEL CONCENTRATED IN A DEMONSTRATED IN A DEMONSTRATED IN A DEMONSTRATED IN A DEMO in the broth, and therefore can be used as the monitoring parameter.**
 Such as the monitoring of Fed-Batch Bioreactors

As demonstrated before in [17], n_b is directly related to S and P concentrations

in the broth,

-
- **3. Real-time Monitoring of Fed-Batch Bioreactors**
 with Optical Fibers
 Instrumentation Setup and Costs

 As demonstrated before in [17], n_b is directly related to S and P concentrations

in the broth, and therefo **sufficiently diluted (until ~0.12 gL-1)**, the sensor may be used for the directions of the other hand, this sensor is quite robust: as shown on [3,17], if the broth is sufficiently diluted (until ~0.12 gL-1), the sensor **Instrumentation Setup and Costs**

• As demonstrated before in [17], n_b is directly related to *S* and *P* concentrations

in the broth, and therefore can be used as the monitoring parameter.

• On the other hand, this As demonstrated before in [17], n_b is directly related to *S* and *P* concentrations
in the broth, and therefore can be used as the monitoring parameter.
On the other hand, this sensor is quite robust: as shown on [3,17 As demonstrated before in [17], n_b is directly
in the broth, and therefore can be used as the
On the other hand, this sensor is quite robust
sufficiently diluted (until ~0.12 gL⁻¹), the se
quantifying of the biomass c
- The sensor may be used for the direct

DR X.

, a small sample may be collected to

ted and diluted to a known volume to

ECSA-7 2020 marcosoares.feq@gmail.com 22

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Material Bioreactors
 3. Real-time Monitoring of Fed-Batch Bioreactor

W**ith Optical Fibers**

Instrumen **EXERCISE ON THE PARTICULATE CONNECTIVE CONSUMPLANE CO Real-time Monitoring of Fed-Batch Bioreactors**
with Optical Fibers
strumentation Setup and Costs
On the particulate system, light that reaches cells is scattered, generating
random fluctuations that are coupled back

-
- **3. Real-time Monitoring of Fed-Batch Bioreactors**
 with Optical Fibers
 Instrumentation Setup and Costs

 On the particulate system, light that reaches cells is scattered, generating

random fluctuations that are co **Summer Summer Summer Summer Summer Summer Summer Strumentation Setup and Costs**
On the particulate system, light that reaches cells is scattered, generating
random fluctuations that are coupled back to the fiber core [3] **Summer Summer Strumentation Setup and Costs**

On the particulate system, light that reaches cells is scattered, generating

random fluctuations that are coupled back to the fiber core [3].

The assessment of X is then ba **strumentation Setup and Costs**

On the particulate system, light that reaches

random fluctuations that are coupled back to the

The assessment of X is then based on obtaining

the light intensity I_R , $G_2(\tau)$, where t the instant of the measurement, T is the
otal of measurements collected, and τ is
 $\approx \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} I(j) \cdot I(j + \tau)$ (6)
ECSA-7 2020 – marcosoares.feq@gmail.com 23

$$
G_{2}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} I(t) \cdot I(t + \tau) dt \approx \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} I(j) \cdot I(j + \tau) \tag{6}
$$

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Material Bioreactors
 3. Real-time Monitoring of Fed-Batch Bioreactor

W**ith Optical Fibers**

Instrumen **BEREVIS COMPRIME LUNCAMP, LUNCAMP, LUNCAMP, LUNCAMP, LUNCAMP, LUNCAMP, LUNCAMP, LUNCAMP, CONDICAL PRIME OF CONDICATION

3. Real-time Monitoring of Fed-Batch Bioreactors

With Optical Fibers

Instrumentation Setup and Cos Equation (6) may be fitted by Equation (7) (Siegert Equation) [3]:**
 Equation (6) may be fitted by Equation (7) (Siegert Equation) [3]:
 $G_2(\tau) = \alpha + \beta \exp(-2T\tau)$ (7)

$$
G_2(\tau) = \alpha + \beta \exp(-2\Gamma \tau) (7)
$$

- **Instrumentation Setup and Costs**

 When the quasi-elastic light scattering (QELS) phenomenon takes place,

Equation (6) may be fitted by Equation (7) (Siegert Equation) [3]:
 $G_2(\tau) = \alpha + \beta \exp(-2\Gamma \tau)$ (7)

 In Equation (**Instrumentation Setup and Costs**

• When the quasi-elastic light scattering (QELS) phenomenon takes place,

Equation (6) may be fitted by Equation (7) (Siegert Equation) [3]:
 $G_2(\tau) = \alpha + \beta \exp(-2\Gamma \tau)$ (7)

• In Equation (\n When the quasi-elastic light scattering (QELS) phenomenon takes place, Equation (6) may be fitted by Equation (7) (Siegert Equation) [3]: $G_2(\tau) = \alpha + \beta \exp(-2\Gamma \tau)$ (7)\n In Equation (7), <i>α</i> and <i>β</i> are the fitting adjustable parameters. The adjustment is used to calculate <i>Γ</i>, the average decay rate, which is directly proportional to X.\n Therefore, depending on the control goals and on the available infrastructure, the sensor can easily monitor <i>S/P</i> and/or X.\n The assessment can be directly performed in-line or in a parallel vessel.\n SCHSONS MDPI ESA-7 2020 – matrices
-
-

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers Sares of all, Technical Edeoporations Campinas - UNICAMP, Laboratory of Photonic Materials and Devices
 3. Real-time Monitoring of Fed-Batch Bioreact
 19. Real-time Monitoring of Fed-Batch Bioreact
 Instrumentation Se 3. Real-time Monitoring of Fed-Batch Bioreactors
 with Optical Fibers
 Instrumentation Setup and Costs

• Table 1: list of all necessary components to implement the sensor setup, along

with the cost per unit and sup **Example 1: Instant Proprise of Fed-Batch Bi**
 with Optical Fibers
 strumentation Setup and Costs

Table 1: list of all necessary components to implement the servith the cost per unit and supplier.

The total cost in B

-
- **Example 18 The total cost in Brazilian Costs**
 example 1: list of all necessary components to implement the sensor setup, along

with the cost per unit and supplier.

 The total cost in Brazilian *Reais* (BRL) and Unit **Strumentation Setup and Costs**
 Strumentation Setup and Costs

Table 1: list of all necessary components to implement the sensor setup, along

with the cost per unit and supplier.

The total cost in Brazilian *Reais* (B **strumentation Setup and Cos**
Table 1: list of all necessary components
with the cost per unit and supplier.
The total cost in Brazilian *Reais* (BRL)
presented in the last row: an exchange i
was used. ECSA-7 2020 – marcosoares.feq@gmail.com

Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber
 Dividends Soares of Analysis of Optical Fiber
 Dividends Soares Soares et al., Technical and Economic Viability Analysis of Optical Fiber

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Visibly Analysis of Optical Fiber

3. Real-time Monitoring of Fed-Batch Bioreact

With Optical Fibers

In

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Il-time Monitoring of 3. Real-time Monitoring of Fed-Batch Bioreactors with Optical Fibers University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Somes et al., Technical and Economic Visiblity Analysis of Optical Fiber

3. Real-time Monitoring of Fed-Batch Bioreact

with Optical Fibers
 ● Aside from the individual components, qualified personnel are required to Supervise the implementation **Setup and Costs**
Supervise the implementation **Setup and Costs**
Supervise the implementation of the optical **Fibers**
To that end, we are also considering in our calculations the cost of hiring **3. Real-time Monitoring of Fed-Batch Bioreactors**
 with Optical Fibers
 Instrumentation Setup and Costs

• Aside from the individual components, qualified personnel are required to

supervise the implementation of the

-
-
- **S. Real-time information Setup and Costs**
 Instrumentation Setup and Costs

 Aside from the individual components, qualified personnel are required to

supervise the implementation of the optical fiber reflectometer.
 strumentation Setup and Costs
Aside from the individual components, qualified personnel are required to
supervise the implementation of the optical fiber reflectometer.
To that end, we are also considering in our calcula Stide from the individual components, qualified personnel are required to
supervise the implementation of the optical fiber reflectometer.
To that end, we are also considering in our calculations the **cost of hiring a**
qua side from the individual components, qualified personnel are required to
upervise the **implementation** of the optical fiber reflectometer.

o that end, we are also considering in our calculations the **cost of hiring a**

ua supervise the implementation of the optical fiber reflectometer.

To that end, we are also considering in our calculations the **cost of hiring a**

qualified engineer for a six months period.

According to Brazilian law 4.9
- 1st-year cost of implementing the fiber optic sensing setup (components +

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technological fiber Material Bloveadors

Sensibility of Fiber Optics Sensing

 Comparison of the costs of implementing the in-University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Valaphy, Materia Hotel Fiber

Soares et al., Technical And Contouring Industrial Blorescore

Soares of o **4. Economic Viability of Fiber Optics Ser**

• Comparison of the costs of implementing the in-line of reflectometer with traditional HPLC analysis.

• We have considered **two scenarios:**

• in the first scenario, an ethano
-
- **4. Economic Viability of Fiber Optics Sensing**

Comparison of the costs of implementing the in-line optical fiber

eflectometer with traditional HPLC analysis.

We have considered two scenarios:

 in the first scenario, **ECONOTITE VIADITY OF TIDET OPTICS SETISTING**
mparison of the costs of implementing the in-line optical fiber
ectometer with traditional HPLC analysis.
have considered **two scenarios:**
in the first scenario, an ethanol pla mparison of the costs of implem
ectometer with traditional HPLC a
have considered **two scenarios:**
in the first scenario, an ethanol plant a
but acquisition and maintenance costs
be prohibitive;
and so in the second scenar ● and so in the second scenario, the plant hires a third party specialized in ectometer with traditional HPLC analysis.

have considered **two scenarios**:

in the first scenario, an ethanol plant acquires their own H

but acquisition and maintenance costs for a chromatograp

be prohibitive;

and so i nt acquires their own HPLC equipment,
osts for a chromatography column may
plant hires a third party specialized in
ECSA-7 2020 – marcosoares.feq@gmail.com 28
	-

4. Economic Viability of Fiber Optics Sensing University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability of Fiber Optics Sensi

Soares et al., Technical and Economic Viability of Fiber Optics Sensi

-
- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Source et al., Technology Material Blockedics

4. Economic Viability of Fiber Optics Sensing

First Scenario: acquiring HPLC equipment

 We h **4. Economic Viability of Fiber Optics Sensing**
t Scenario: acquiring HPLC equipment
We have contacted several suppliers and arrived at:
• an average cost of 27,500.00 USD (150,700.00 BRL) for a refurbished benchtop
• plus equipment,
	-
	- **4. Economic Viability of Fiber Optics Sensing**

	t Scenario: acquiring HPLC equipment

	We have contacted several suppliers and arrived at:

	 an average cost of 27,500.00 USD (150,700.00 BRL) for a refurbished benchtop

	eq cenario: acquiring HPLC equipment
have contacted several suppliers and arrived at:
an average cost of 27,500.00 USD (150,700.00 BRL) for a refurbished benchtop
equipment,
plus 200.00 USD/hour (1,096.00 BRL/hour) installati **CENTRIO:** acquiring HPLC equipment
have contacted several suppliers and arrived at:
an average cost of **27,500.00 USD (150,700.00 BRL)** for a refurbished benchtop
equipment,
plus 200.00 USD/hour (1,096.00 BRL/hour) instal HPLC); ■ an average cost of **27,500.00 USD (150,700.00 BRL)** for a refurbished benchtop

	equipment,

	■ plus 200.00 USD/hour (1,096.00 BRL/hour) installation costs.

	■ Acquisition and installation costs already far surpass those an average cost of **27,500.00 USD (150,700.00 BRL)** for a refurbished bend
equipment,
plus 200.00 USD/hour (1,096.00 BRL/hour) installation costs.
Acquisition and installation costs already far surpass those from acquirin
 ur) **installation costs.**
Exady far surpass those from acquiring all
cs setup (the **assembly of the reflectometer**
relation to the acquisition of a refurbished
re to invest more resources to maintain a
column.
ECSA-7 20
	-

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Scares et al., Technical and Economic Wability analysis of Optical Fiber

4. Economic Viability of Fiber Optics Sensing

Second Scenario: plan BRAZIM OF CHINGAMP, Laboratory of Photonic Materials and Devices
 4. Economic Viability of Fiber Optics Sensing

Second Scenario: plant hires a third party laboratory

• On Brazilian market the average cost of contractin
- **4. Economic Viability of Fiber Optics Sensing**
Second Scenario: plant hires a third party laboratory
• On Brazilian market the average cost of contracting HPLC analysis services is of
100 BRL/hour (18.25 USD/hour).
• It **4. Economic Viability of Fiber Optics Sensing**

cond Scenario: plant hires a third party laboratory

On Brazilian market the average cost of contracting HPLC analysis services is of
 100 BRL/hour (18.25 USD/hour).

It cond Scenario: plant hires a third party laboratory

On Brazilian market the average cost of contracting HPLC analysis services is
 100 BRL/hour (18.25 USD/hour).

It is possible to estimate the yearly cost by considerin **Second Scenario: plant hires a third party laboratory**

● On Brazilian market the average cost of contracting HPLC analysis services is of
 100 BRL/hour (18.25 USD/hour).

● It is possible to estimate the yearly cost b Supply that the contribution of

ECSA-7 2020 – marcosoares.feq@gmail.com

ECSA-7 2020 – marcosoares.feq@gmail.com
-

4. Economic Viability of Fiber Optics Sensing

University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Sons et al., Technical and Economic Viability Analysis of Optical Fiber

4. Economic Viability of Fiber Optics Sensing

Hypotheses used to est University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors

Hypotheses used to e

Notice Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
 \bullet 6 and 0 and Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f Soares et al., Technical and Economic Viability Analysis of Optical Fiber

4. Economic Viability of Fiber Optics Sensing University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 4. Economic Viabili

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technological Costomic Wabisily Analysis of Optical Fiber

4. Economic Viability of Fiber Optics Sensing

in Film III, we can u University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technola Park Montoling Industrial Blovectors

Senes for Montoling Industrial Blovectors

Finally, we can use this data to calc University of Campinsa - UNICAMP, Laboratory of Photonic Materials and Devices

Somes of all The fiber optics Sensing

Finally, we can use this data to calculate, with a Weighted Average Capital Cost

(WACC) model [19], th Soares et al., Technical and Economic Viability Analysis of Optical and Economic Viability Analysis of Optical Sensors for Monitoring Industrial Bioreactors
Finally, we can use this data to calculate,
(WACC) model [19], th **4. Economic Viability of Fiber Optics Sensing**

• Finally, we can use this data to calculate, with a Weighted Average Capital Cost

(WACC) model [19], the 5-year cash flow of an ethanol plant after

implementation of the **4. ECONOMIC VIADIIITY OT FIDET OPTICS SENSING**
Finally, we can use this data to calculate, with a Weighted Average Capital Cost
(WACC) model [19], the **5-year cash flow** of an ethanol plant after
implementation of the fib Finally, we can use this data to calculate, with a Weighted Average Capi
(WACC) model [19], **the 5-year cash flow** of an ethanol plan
implementation of the fiber optic instrumentation in detriment of con
HPLC services.
 • Finally, we can use this data to calculate, with a Weighted Average Capital Cost (WACC) model [19], **the 5-year cash flow** of an ethanol plant after **implementation of the fiber optic instrumentation** in detriment of co Finally, we call use this data to calculat
(WACC) model [19], **the 5-year calculat**
implementation of the fiber optic insti
HPLC services.
WACC: this methodology consists on **e**
cost (interest on the amount) and the

- return demanded by shareholders (cost
de [19].
Derior than the debt and capital costs to
Analysis for Investment and Corporate Finance, 2nd ed; John Wiley & Sons. 2011.
ECSA-7 2020 marcosoares.feq@gmail.com 33 ethodology consists on **evaluating the contribution of the debt**
 on the amount) and the return demanded by shareholders (cost
 the investment to be made [19].

ect must show return superior than the debt and capital c
-

4. Economic Viability of Fiber Optics Sensing University of Campinas – UNICAMP, Laboratory of Pho

Soares et al., Technical and Economic Viability Ana

Sensors for Monitoring Industrial Biore

Sensors for Monitoring Industrial Biore

• Considering:

• depreciation rat

- -
- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Soares et al., Technical and Economic Viability of Fiber Optics Sen **4. Economic Viability of Fiber Optics Sensing**

Considering:

• depreciation rate of 20% per year;

• Net present value (NPV) discount rate of 2.25% per year (current 2020

Brazilian rate as per Brazil's Central Bank - BA **Example: Configure 1: All of Schools Central Bank - Bank Schools**
depreciation rate of 20% per year;
Net present value (NPV) discount rate of 2.25% per year (current 2020
Brazilian rate as per Brazil's Central Bank - BACE **Economic Viability of Fiber Optics S.**
Insidering:
depreciation rate of 20% per year;
Net present value (NPV) discount rate of 2.25% per yea
Brazilian rate as per Brazil's Central Bank - BACEN), we d
Internal Rate of Retu Considering:

■ depreciation rate of 20% per year;

● Net present value (NPV) discount rate of 2.25% per year (current 2020

Brazilian rate as per Brazil's Central Bank - BACEN), we can calculate an

IRR is an estimate of
	- platform. ity of the investment in the fiber optic
ECSA-7 2020 – marcosoares.feq@gmail.com 34

4. Economic Viability of Fiber Optics Sensing University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

4. Economic Viability of Fiber Optics Se

Main Financial Indicators

-
- **4. Economic Viability of Fiber Optics Sensing**

in Financial Indicators Obtained

 Internal Rate of Return (IRR): **742.11%.**

 Discounted payback (amount of time for the investment to pay

for itself): **0.14 years, or a ECONOTITIC VIADITLY OF FIDET Optics Sensing.**
Financial Indicators Obtained
Internal Rate of Return (IRR): **742.11%.**
Discounted payback (amount of time for the investment to pay
for itself): **0.14 years, or approximately** ECSA-7 2020 – marcosoares.feq@gmail.com and also
ECSA-7 2020 – marcosoares.feq@gmail.com and also

Notice Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
 \bullet 6 and 0 and Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Notice Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
 \bullet 6 and 0 and Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f Soares et al., Technical and Economic Viability Analysis of Optical Fiber

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 4. Economic Viabili Bonder of Campines - UNICAMP, Laboratory of Photonic Materials and Devices
 4. Economic Viability of Fiber Optics Sensing

Other monitoring alternatives

• For the sake of completeness, we also provide a quick assessment **4. Economic Viability of Fiber Optics Sensing

For the sake of completeness, we also provide a quick assessment of alternative

For the sake of completeness, we also provide a quick assessment of alternative

solutions to**
- **4. Economic Viability of Fiber Optics Sensing**
 Other monitoring alternatives

 For the sake of completeness, we also provide a quick assessment of alternative

solutions to HPLC and the proposed fiber optic reflectome **4. Economic Viability of Fiber Optics Sensing**
her monitoring alternatives
For the sake of completeness, we also provide a quick assessment of alternative
solutions to HPLC and the proposed fiber optic reflectometer.
That
- **Other monitoring alternatives**

 For the sake of completeness, we also provide a quick assessment of alternative

solutions to HPLC and the proposed fiber optic reflectometer.

 That is important especially for the cas For the sake of completeness, we also provide a quick assessment of alternative
solutions to HPLC and the proposed fiber optic reflectometer.
That is important especially for the case where the industry only wishes to
acce nentation broth.

, an optical density measurement with a

metric kits such as [4].

ECSA-7 2020 – marcosoares.feq@gmail.com 38

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 4. Economic Viabili University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Source of al., Technological Education Blockshapes of Optical Fiber

4. Economic Viability of Fiber Optics Sensing

Other monitoring alternati University of Campinas – UNICAMP, Laboratory of Photonic Materials and Device Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber

Soares *et al.*, Technical and Economic Viability Analysis of Optic
- **4. Economic Viability of Fiber Optics Sensing**

pectrophotometers: available for reasonably low prices starting at only a few

housands of dollars.

 Disadvantages of requiring regular sampling of the broth, and the meas **Economic Viability of Fiber Optics Sensing**
monitoring alternatives
trophotometers: available for reasonably low prices starting at only a few
sands of dollars.
Disadvantages of requiring regular sampling of the broth, an **Other monitoring alternatives**

■ Spectrophotometers: available for reasonably low price

thousands of dollars.

■ Disadvantages of requiring regular sampling of the broth, and

direct, since different concentrations of **example is alternatives**

pectrophotometers: available for reasonably low prices starting at only a few

housands of dollars.

• Disadvantages of requiring regular sampling of the broth, and the measurements are not as

d of pectrophotometers: available for reasonably low prices starting at only a few
housands of dollars.
• Disadvantages of requiring regular sampling of the broth, and the measurements are not as
direct, since different conc Unity and the measurements of dollars.

Disadvantages of requiring regular sampling of the broth, and the measureme

direct, since different concentrations of other components will also affere

density.

Of colorimetric ki
- -
- h in regular intervals.
alyzed on the spectrophotometer for a given
ECSA-7 2020 marcosoares.feq@gmail.com 39

4. Economic Viability of Fiber Optics Sensing University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 4. Economic Viabili

-
- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 4. Economic Viabi University of Colorimetric and Economic Viewity Analysis of Optical Fiber
 4. Economic Viability of Fiber Optics Sensing

er monitoring alternatives

Use of colorimetric kits:

• If each test should be conducted once an Sensors for Monitoring Industrial Bloeactors
 1. Economic Viability of Fiber (
 monitoring alternatives

of colorimetric kits:

If each test should be conducted once an hour (w

optical fiber setup):

• Each kit in [4] **Economic Viability of Fiber Optics Sensing**
 Example 10 nonitoring alternatives
 Example 10 for analyzing 20 samples.
 Example 10 for analyzing 20 samples.
 Example 12 analysis/day, 200 days per year, it results i **ECONDITITE VILATIFY OF TINCT OPTICS SCHISHING**
 Solution
 Solution
 Solution
 Solution
 Each kit in [4] can be used for analyzing 20 samples.
 • Considering 12 analysis/day, 200 days per year, it results in a
	-
	-
	- **nitoring alternatives**
plorimetric kits:
ch test should be conducted once an hour (which is simple to do with the
al fiber setup):
Each kit in [4] can be used for analyzing 20 samples.
Considering 12 analysis/day, 200 day **Example 11 This scenario, the conducted once an hour (which is simple to do with the bottical fiber setup):**

	• Each kit in [4] can be used for analyzing 20 samples.

	• Considering 12 analysis/day, 200 days per year, it r order that should be conducted once an hour (which is simple to do with the
al fiber setup):
Each kit in [4] can be used for analyzing 20 samples.
Considering 12 analysis/day, 200 days per year, it results in a total usage See of colorimetric kits:

	• If each test should be conducted once an hour (which is simple to do with the optical fiber setup):

	• Each kit in [4] can be used for analyzing 20 samples.

	• Considering 12 analysis/day, 200 optical fiber setup):

	• Each kit in [4] can be used for analyzing 20 samples.

	• Considering 12 analysis/day, 200 days per year, it results in a total usage of

	year, or about **9,360.00 USD/year (51,292.80 BRL/year)** in c 20 samples.

	per year, it results in a total usage of 120 kits per
 92.80 BRL/year) in costs.

	alone, not including inflation and other required

	is **almost twice the costs of acquiring all the**
 meter.

	ach is still v
	-

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f Experience of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Viability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors

ECONCLUSIONS Soares et al., Technical and Economic Viability Analysis of Optical Fiber

5. Conclusions

- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Soares et al., Technical and Economic Visiblity Analysis of Optical Fiber

Sensors for Montioning Industrial Bioreactors

Sensors for Montioni
- University of Campinas UNICAMP, Laboratory of Photonic Materials and Devices

Sonses *et al.*, Technical and Economic Vability Analysis of Optical Fiber

Sensors for Monitoring Industrial Bioreactors
 5. CONCLUSIONS

T University of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices

Source et al., Technical and Economic Valenting Industrial Bluecacles

Source at al., Technical and Economic Valenting Industrial Bluecacles
 Sources of the complementing to determine the source of the complement with a source of the control of 5. Concl
There is considerable medium- and long-term
systems for monitoring fed-batch bioreactors ;
The average Brazilian ethanol plant is expecte
50 days, together with a 5-year NPV of 525,08
Similar results are expected ■ There is considerable medium- and long-term financial gains from implementing fiber optic systems for monitoring fed-batch bioreactors as a substitute for traditional HPLC analysis.
■ The average Brazilian ethanol plant
-
- -
- here is considerable medium- and long-term financial gains from implementing fiber optic
ystems for monitoring fed-batch bioreactors as a substitute for traditional HPLC analysis.
he average Brazilian ethanol plant is expe Sterns for monitoring rea-batch bibreactors as a substitute for traditional first entarysis.
 he average Brazilian ethanol plant is expected to see a return for their investment in about 0 days, together with a 5-year NPV average Brazilian ethanol plant is expected to see a **return for their investment in about**
ays, together with a 5-year NPV of 525,088.06 USD, corresponding to an IRR of 742%.
lar results are expected for any industry worl ays, together with a 5-year NPV of 525,088.06 USD, correspond
lar results are expected for any industry worldwide that utiliz
bioreactors.
proposed fiber optic setup is comparatively a very low-cost anal
lt does not demand Ily a very low-cost analytical solution:

hel to operate and maintain it;

hel can be adapted for most industrial needs

s, being able to detect from sucrose to even

ECSA-7 2020 – marcosoares.feq@gmail.com 41

niversity of Campinas – UNICAMP, Laboratory of Photonic Materials and Devices
Soares *et al.*, Technical and Economic Viability Analysis of Optical Fiber
Sensors for Monitoring Industrial Bioreactors
Example 2.1 Analysis Sensors for Monitoring Industrial Bioreactors **Contract Sensors for Sensors for Sensors for Sensors** for Sensors f Soares et al., Technical and Economic Viability Analysis of Optical Fiber

sensors

Thank you for your attention!

Questions?

marcosoares.feq@gmail.com fujiwara@fem.unicamp.br

Funding: São Paulo Research Foundation (FAPESP) Grant 2019/22554-4.
Funding: São Paulo Research Foundation (FAPESP) Grant 2019/22554-4.

