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Abstract: In this paper, we present a synthetic wide-bandwidth radar system using software defined
radios (SDR), and demonstrate the proposed approach using a Universal Software Defined Radio
Peripheral (USRP) device. Normally, USRP devices have tens of MHz bandwidth, and cannot generate
large bandwidth sweeps to achieve cm level range resolution. By using a synthetic wide-bandwidth
approach, we can generate frequency sweeps up to 5 GHz bandwidth and obtain high-resolution range
profiles. We will first summarize the mathematical details of the proposed approach, then present a
pure Python based solution using the UHD library, and a GNU radio + Octave based implementation,
and finally present experimental results for two different test cases. The developed code is available on
a public GitHub repo. Compared to the FMCW radars with a voltage controlled oscillator, the sweep
time or the experiment duration is longer, but very large bandwidth sweeps can be realized easily by
using low-cost USRP devices, and sweeps are more accurate. All of our experimental results indicate
the effectiveness of the proposed low-cost software defined radar system.

Keywords: radar sensors; software defined radar; USRP

1. Introduction

Software defined radio (SDR) devices, and in particular Universal Software Radio Peripheral
(USRP) devices can be used to build radar systems in a variety of different ways. In this paper,
we present a synthetic wide-bandwidth approach to achieve a couple of GHz sweep bandwidth,
and achieve cm level range resolution.

In [1], a frequency modulated continuous wave (FMCW) radar is built using two NI-USRP 2920
units, and because of the the bandwidth limitations of USRP devices, achieved range resolution was
approximately 10 m. In [2], a completely different USRP based radar system is presented using two
N210 devices. Basically, an OFDM signal which is normally used to carry digital information from a
transmitter to a receiver is used to build a radar sensor. The transmitter system has a receive antenna
as well, and by processing the reflected OFDM waveform, range and velocity estimates are obtained.
Both FMCW and OFDM radars need high bandwidth USRPs to achievable better range resolution.
Basically, c/(2B) is the theoretical range resolution where c is the speed of light, and B is the bandwith
of the chirp signal or of the OFDM frame. In [3], a different USRP based OFDM radar is presented.
This is a two stage converter system operating at mm-wave frequencies, and as in the previous two
cases, bandwidth limitations of USRP devices resulted lower range resolution.

In this paper, we address this bandwidth limitation of USRP devices by using a synthetic
wide-bandwidth design approach. Basically, in a single experiment, USRP devices can generate only
narrow band signals. But by changing the local oscillator frequency and repeating the same narrow
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band measurement multiple times, it is possible to emulate a wide-bandwidth radar system. In [4,5],
a frequency stacking approach is presented using pseudo random signals as the transmit signal. This is
basically a frequency domain synthetic wide-bandwidth design to improve the range resolution. In [6],
a completely different time domain synthetic wide-bandwidth design is presented using an E312 model
USRP. The mathematical theory behind this time domain approach is based on [7].

In this paper, we present a simple frequency domain synthetic wide-bandwidth (SWB) design to
achieve GHz level bandwidths and improve the range resolution. The mathematical theory is based on
modelling the physical medium as a multiple delay system. Consider the USRP based radar and/or
communication system shown in Figure 1.

Physical medium

LO

TX RX

LO

H(s)x (t) y (t)b b

Figure 1. The physical medium has transfer function H(s), and the local oscillator (LO) frequency is fe.

The physical medium between the TX and RX antennas has a transfer function, H(s), which can
be modelled as

H(s) = L(s)∑
q

aqe−hqs,

where aq’s are complex scalars, and L(s) is band-pass centered around fe. Basically, the RF subsystem,
and the antennas define the filter L(s). To simplify the derivations, we assume that the system is
calibrated and L(s) ≈ 1 in the frequency band [ fe − fB, fe + fB]. We define the radar problem as a
measurement process to estimate hq’s and aq’s.

This is basically a pure software defined radar approach, and has various advantages. First of
all, it is made of standard USRP devices, and is highly reconfigurable. FMCW radars built using
voltage controlled oscillators (VCO) exhibit nonlinearity in range measurements, mainly due to VCO
nonlinearity. Although there are various techniques to mitigate this effect, see [8] and the references
therein, software defined radars will have a competitive advantage from this perspective.

This paper is organized as follows: In Section 2, we present mathematical preliminaries, and in
Section 3, we present the proposed SWB algorithm. In Section 4, a pure Python based implementation
built on the UHD driver is presented, and all the developed code is shared on a publicly accessible
GitHub repo. Using the developed software, we generated a synthetic sweep from 1.9 GHz to 4.2 GHz
using a B205 mini, and a B210 USRP device, and used this system for a real measurement. In Section 5,
we present an alternative system based on GNU radio graphs and Octave based programming.
In Section 6, we present another experimental result using a delay line with two propagation paths,
and finally in Section 7, we make some concluding remarks.

2. Mathematical Preliminaries

In this section, we will summarize our mathematical notation and review some preliminaries
from [9]. We will frequently use the complex baseband representation of passband signals, and reserve
the subscript, b, for baseband signals. Basically, if s(t) is the real passband signal, sb(t) will be the
complex baseband version. In this paper we describe a measurement procedure based on changing
the local oscillator frequency multiple times and repeating a basic measurement process. Therefore,
the local oscillator frequency is not fixed throughout the paper, and whenever the local oscillator
frequency is clear from the context, its value will not be explicitly mentioned in the discussion.
This applies for the bandwidth, and the sampling period as well.
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For a SWB experiment, we will consider the system defined in Figure 1 with local oscillator
frequency fe, and complex baseband signals in the frequency range [− fB, fB]. This will be a hypothetical
wide-band system which exists only in the mathematical domain. For actual measurements, we will
operate the same system with local oscillator frequencies fc ∈ [ fe − fB, fe + fB], and bandwidth B� fB.
By combining multiple narrow-band measurements, we will emulate a wide-band measurement,
which is the main idea behind the SWB approach. All of our actual narrow-band measurements are
done by using USRP’s as the transmitter and the receiver. To simplify the mathematical analysis, we will
first assume shared local oscillator configuration, and address other configurations later in the paper.

Consider a complex baseband signal, sb(t), band limited to [−B, B], with B < fc. The passband
version, s(t), will be

s(t) =
√

2Re
(

sb(t)ej2π fct
)

,

see [9]. We use capital letters to denote the Fourier transform of continuous time signals,

S( f ) =
∫ +∞

−∞
s(t)e−j2π f tdt, s(t) =

∫ +∞

−∞
S( f )e−j2π f td f .

In the frequency domain, we have the following equations for the baseband and passband signals,

Sb( f ) =
√

2S+( f + fc), S( f ) =
Sb( f − fc) + S∗b (− f − fc)√

2
,

where S+( f ) = S( f )IR+ , and IR+ is the characteristic function of the set R+, see [9]. For the system
shown in Figure 1, with xb(t) as the input and yb(t) as the output, we have

Y( f ) = H( f )X( f ), Yb( f ) =
1√
2

Hb( f )Xb( f ).

For a given complex baseband signal, sb(t), we will also define a (complex) discrete time signal,
sd[n] = sb(nT), where T is the sampling period equal to 1/(2B), or 1/(2 fB).

2.1. Channel Frequency Response Measurement

In this subsection, we focus on the frequency response of the channel, and describe a measurement
procedure. Consider the system shown in Figure 1 with local oscillator frequency set to fc. Assume that
the output y(t) is sampled as yd[n] = yb(nT), and the input is driven by

xb(t) = ∑
n

xd[n]g(t− nT),

where g(t) = sinc(t/T), and T = 1/(2 fB). If xd[n] is a complex exponential, i.e. xd[n] = ejΩn,
with Ω ∈ [−π, π], then

xb(t) = ejΩt/T , yb(t) = H
(

fe +
1

2π

Ω
T

)
ejΩt/T ,

and

yd[n] = H
(

fe +
1

2π

Ω
T

)
ejΩn, Hd(ejΩ) = H

(
fe +

1
2π

Ω
T

)
,

where Hd is the transfer function from xd to yd.
The frequency response can be measured by using a relatively simple narrow-band experiment.

Basically, to compute H( fc), one can change the local oscillator frequency to fc, set xd[n] = 1,
use zero-order hold on the transmitter side, and observe the steady state value of yd[n].
Below, we present an improved algorithm which does not use DC values.
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Algorithm 1: Narrow-band CFR measurement
Result: H( fc)

1 Set T = 1/(2B) for a narrow-band experiment, and use zero-order hold on the
transmitter USRP,

2 On the transmitter USRP, set the local oscillator frequency to fc, set xd[n] = 1,
3 On the receiver USRP, choose an integer M > 2, set the local oscillator frequency to

fc − (B/M), and estimate the amplitude of complex exponential ejπn/M in the steady state
response of yd[n],

4 This amplitude can be computed by doing a simple FFT analysis, and the result will be equal
to H( fc).

2.2. Channel Impulse Respone Based Radar

In this subsection, we study the relationship between the channel impulse respone and the original
radar problem. If the input xd[n] is a discrete-time impulse, then xb(t) = sinc(t/T), where T = 1/(2 fB).
For a calibrated system with L(s) = 1, we have

Hb(s) = ∑
q

e−j2π fehq
√

2 aq e−hqs

and
yb(t) = ∑

q
e−j2π fehq aq sinc((t− hq)/T).

The main question is the following: If we simply look at the sampled version, yd[n] = yb(nT), can we
detect all reflectors, and estimate their radar cross section simply from the channel impulse response?

To understand this problem in a better way, let’s consider the case of a single reflector.
If H(s) = e−hqs, we expect yd[n] ≈ δ[n− no] where no ≈ hq/T. However, depending on the exact value
of the ratio, hq/T, this is not guaranteed, and yd[n] may have a very small main lobe, much smaller side
lobes, and the presence of the reflector may not be detected when we simply look at yd[n]. However,
if we sample

rb(t) =
2π

4 + π

(
yb(t− T/2) + yb(t + T/2)

)
,

the sampled version will have a single main lobe with peak value close 1, smaller side lobes, and the
presence of the reflector will be clearer when we simply look at rd[n]. The only appearant disadvantage
is the main lobe may have two samples (taps) rather than one.

3. Proposed SWB Radar Algorithm

In this section, we will summarize our main SWB algorithm. Consider the transfer function,
Hd(ejΩ), from xb[n] to yb[n], and the transfer function Gd(ejΩ), from xb[n] to rb[n]. We have Hd(ejΩ) =

H
(

fe +
1

2π
Ω
T

)
,

Gd(ejΩ) =
2π

4 + π
(e−jΩ/2 + e+jΩ/2)H

(
fe +

1
2π

Ω
T

)
,

and the function, 4π
4+π cos(Ω/2), can be viewed as a “windowing” function.

Below, we present an algorithm to estimate gd[n]. The N is chosen large enough so that the most of
the energy of gd[n] is concentrated in [0, N). This algorithm is based on the narrow-band measurement
algorithm described earlier.
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Algorithm 2: SWB radar
Result: Reflector locations.

1 Define a purely mathematical wide-bandwidth radar system with T = 1/(2 fB),

2 Compute Hd(ej2πk/N) = H
(

fe +
k
N fB

)
, using the narrow-band CFR algorithm on a real

narrow-band USRP device,
3 Apply the windowing function 4π

4+π cos(πk/N) to Hd(ej2πk/N),
4 Compute the inverse FFT of this result to compute gd[n],
5 A peak at index no in the impulse response, gd[n], is interpreted as a reflector at

distance noTc/2.

Performance Limitations

All round-trip time delay’s are estimated with error bound T = 1/(2 fB), and reflector positions
are estimated with error bound cT/2. Therefore,

Range resolution =
c

4 fB
,

and the maximum range will be

Maximum range = N
cT
2

= N
c

4 fB
.

Therefore, for better radar performance, the hypothetical system should have large bandwidth, 2 fB,
and N should be selected as a large positive integer.

4. Python Based Implementation

In this section, we summarize a pure Python based implementation of the SWB radar algorithm
using USRPs. The developed code is available at https://github.com/onurtoker/swb_radar, and has
been tested using using a USRP B200 mini as a transmittter, and USRP B210 as a dual channel receiver.
The theory presented in the previous section was based on local oscillator sharing, but instead we
used a loopback signal from the transmitter to the receiver. Even with local oscillator sharing, or with
a common 10 MHz reference input, USRPs will have different A/D sampling clocks, and use of a
loopback signal solves all of these synchronization problems [10].

In Table 1, we summarize the version numbers of the major software components used in this work.

Table 1. Software versions.

Ubuntu 18.04.1

PyCharm 2020.1

Python 3.6.9

numpy 1.16.3

scipy 1.2.1

UHD driver 3.15.LTS

The Python code is easy to read, and mostly self-explanatory. It is a multi-threaded design using
the UHD API, and there is an object called myUSRP which provides a layer of abstraction. The main
program, usrp_radar, is built on this abstraction layer and has the loop for changing the local oscillator
frequency, reading the received data, and writing these to a .mat file. Although it is possible to do
all DSP processing in Python using numpy, scipy,matplotlib, we use the Python code for only

https://github.com/onurtoker/swb_radar
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coordinating the real-time experiment, and recording the results. All post-processing is done in
MATLAB, see the rangePlot.m in the GitHub repo.

We consider two test configurations shown in Figure 4. The reflector shown in the left configuration
is about 30 cm closer compared to the one shown on the right. When we look at the normalized CIR plots
shown in Figure 3, we see a stationary major lobe, which corresponds to a strong line of sight coupling,
and but also see a smaller lobe shifted about 30 cm between two configurations. For measurements,
we used 200 uniformly seperated frequencies from 1.9 GHz to 4.2 GHz, and used zero-padding to
obtain smoother FFT plots. The GitHub repo has the MATLAB code with windowing, and inverse FFT
to compute the CIR.

5. GNU Radio + Octave Implementation

In this section, we summarize a GNU radio + Octave based implementation of the
SWB algorithm. The solution presented here is based on XLMRPC and ZMQ blocks of the
GNU radio. The developed sample GNU radio graph and the Octave script are available at
https://github.com/onurtoker/swb_radar. Basically, we use the same USRP devices, and the same
setup shown in Figure 2. The GNU radio graph has an XLMRPC block which allows external programs,
like Octave, to change variables defined within the graph. This feature is used to change the local
oscillator frequency of the USRP devices from an Octave script. To get XMLRPC functionality in
Octave, we are using a simple script available in the GitHub repo. However, the same functionality
can be achieved by using other tools, for example the Apache’s XMLRPC library. Our script based
solution may not be elegant, but it does not require any extra software installation. In the GitHub
repo, swb_radar.grc, is the GNU radio graph file that we used for the experiments, see Figure 5,
and swb_radar.m is the Octave script which acts as the master program. To transfer captured data
from the GNU radio graph to an external program, we are using a ZMQ block. Basically, the Octave
script changes the local oscillator frequency using XMLRPC, reads the captured data using ZMQ,
and then processes the captured raw data to generate radar range profiles. All of these details are
available in the sample code swb_radar.m Octave script available in the GitHub repo.

Figure 2. Test setup with two USRPs (B200 mini and B210), a splitter, and a loopback connection.

https://github.com/onurtoker/swb_radar
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Figure 3. Normalized CIR in absolute value. Blue and orange plots correspond to the left and right
configurations shown in Figure 4.

Figure 4. Test configurations. On the left, the reflector is closer compared to the configuration shown
on the right.

Figure 5. GNU radio graph used for the SWB radar experiment.



Journal Not Specified 2020, 1, 5 8 of 9

6. Delay Line Experiment

In this section, we present the results of a delay line experiment with two propagation paths.
The experimental setup is shown in Figure 6, and there is a short loopback from the transmitter to
the receiver, similar to the previous experiments. The transmitter signal also goes through another
longer channel which has 3 identical coaxial cables, a splitter, and a combiner. Basically, this longer
channel has two propagation paths of length 2 h and 3 h respectively. The normalized CIR presented
in Figure 7 has a peak around the tap 23 and another one at 35, and their ratio is 1.52, which is very
close to the theoretically expected value of 3/2. For this experiment, we generated a synthetic sweep
of bandwidth 2 GHz, and obtained approximately 10 cm resolution in cable length. The speed of light
in the coaxiable cable is assumed to be two thirds of the speed of light in free-space.

Figure 6. Delay line experiment with two propagation paths.
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Figure 7. Normalized CIR of the channel shown in Figure 6.

7. Conclusions

In this paper, we have presented a synthetic wide-bandwidth radar design using USRPs. It is
possible to do narrow band measurements using USRPs, and by changing the local oscillator frequency
several times and repeating the same narrow band experiment, it is possible to achieve synthetic
wide bandwidth. We have developed and shared two different software implementations of the
proposed approach, and presented two different GHz level bandwidth experimental measurements
using USRP devices.
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